
“吃货大数据”最全消费群体数据分析来了
从古至今,中国人对吃的追求便远远高于对'穿住行'的要求,以诗人苏东坡为例,他之所以被称为美食家(换种说法则是吃货、吃虫),正是因为每到一地就充分发挥就地取材的牛逼精神,从临界长江的黄州'东坡肉'到海南苏东坡之子苏过创作的'玉糁羹',真正做到了从北吃到南,扫荡天下美食的气势。
而中国饮食文化博大精深,除了跑遍全国品尝各地特色美食之外,能在本地城市就能吃遍全国美食精华才是吃货的终极梦想。
然而对于资深吃货最苦恼之事莫过于听闻一家评价颇高的餐厅,欣然赴会却发现食之乏味,高评价是刷榜、水军所得;亦或是熟悉的美食吃了千百遍,遍寻不到填补新鲜感、值得尝试的新餐厅,导致吃货再也不吃了。
“O2O时代的吃货力量”餐饮消费大数据新鲜出炉,报告显示了在生活服务O2O快速发展并逐渐回归理性的当下,餐饮O2O消费的新趋势。
女性吃货“碾压”男性
数据显示,男女餐饮消费比例为69.39%:30.61%,近70%的餐饮消费由女性贡献。
餐饮消费额前5%的用户中,也有近7成是女性,女性成为餐饮O2O领域的消费主力。
年轻人是餐饮消费主力军
58%的餐饮消费由25-34岁的青年消费者贡献,85%的餐饮消费由18-34岁的年轻消费者贡献。
餐饮消费额前5%的用户,65%为25-34岁的消费者。
从饭点看出不同城市的生活节奏
哈尔滨、青岛最悠闲:38.33%的哈尔冰消费者晚饭时间在18:00之前,31.53%的青岛消费者晚饭时间在18:00之前。
广深最疯狂:39.28%的深圳消费者晚饭时间在20:00之后,37.67%的广州消费者晚饭时间在20:00之后。
其中,帝都有31.79%的消费者晚饭时间在20:00之后。
北京不同地区饭点差异明显
北京:密云延庆最悠闲 建外大街忙过五道口
在20:00之后吃晚餐 朝阳东城平均30.81%
在18:00之前吃晚餐 密云延庆平均38.9%
跟老板说声“辛苦了”
20:00之后用晚餐的职业人群中,企业主和高层管理者吃得最晚,个体经营者时间最自由
贵阳盛产“土豪吃货”
餐饮平均客单价TOP5城市中,贵阳位列第一,一线城市仅上海、北京入围TOP5。
同一城市不同地区的客单价格差异明显:客单价最高的贵阳小河区是北京最高客单价西城区的2倍!
什么才是你的菜?
不同城市消费者钟爱的餐饮品类差异明显,折射出不同的城市文化。
上海整体更偏西化;
北京则是更加倾向于传统国人口味;
广州没有明显的倾向,更加多元化。
城市特色更吸引游客
全聚德名声在外:89.2%的消费者为外地游客;
北京本地人更青睐东来顺:41.74%的消费者为本地消费者;
做餐饮生意最怕心里没底,顾客的喜好、消费力、就餐原因、口味、接受能力等就是造成餐饮老板心里没底的因素,如果想了解顾客的需求,必然要做好市场调查。不过这些我们已经为你做了,各位餐饮老板可从以下数据看出餐饮消费者的需求。
Tips 1:工作以外的时间,朋友聚餐是最主要的消费行为。讲求实惠,轻松而有趣的氛围是朋友聚餐的首选佳地。每日12点和18点左右分别是午晚餐就餐高峰期,餐厅常常出现排队情况,而在餐点前后时段则经常坐不满。为使上座率最大化,餐厅可以根据不同时间段给予到店客人不同优惠。譬如如果在13-14点到店就餐,客人可享9折优惠;14--15点到店就餐可享8折优惠,以此类推。此外,在线订座高峰期比较集中在就餐前1--2小时。
Tips 2:餐饮业主力消费为上班族,营业者需提高上菜速度。飞速发展的社会使人的生活节奏越来越快,如何在食客的耐心时间内奉上美味佳肴,依旧是最大的话题。标准化的实现使食材前期处理的时间得以控制,若无法达到上菜的黄金时间(20分钟内),设计等待时间的小环节,降低食客的耐心也是个不错的方法。
Tips 3:口味与氛围是最食客最为关心的就餐因素,无疑味道是最为核心的竞争力。口碑、服务以及安全卫生是检验餐厅长久性的软性旗帜。
数据并不是市场的唯一指标,但我们可以通过数据得知市场的方向。无论是作为餐饮从业者还是餐饮爱好者,都可从中得到不少启发。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10