京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“吃货大数据”最全消费群体数据分析来了
从古至今,中国人对吃的追求便远远高于对'穿住行'的要求,以诗人苏东坡为例,他之所以被称为美食家(换种说法则是吃货、吃虫),正是因为每到一地就充分发挥就地取材的牛逼精神,从临界长江的黄州'东坡肉'到海南苏东坡之子苏过创作的'玉糁羹',真正做到了从北吃到南,扫荡天下美食的气势。
而中国饮食文化博大精深,除了跑遍全国品尝各地特色美食之外,能在本地城市就能吃遍全国美食精华才是吃货的终极梦想。
然而对于资深吃货最苦恼之事莫过于听闻一家评价颇高的餐厅,欣然赴会却发现食之乏味,高评价是刷榜、水军所得;亦或是熟悉的美食吃了千百遍,遍寻不到填补新鲜感、值得尝试的新餐厅,导致吃货再也不吃了。
“O2O时代的吃货力量”餐饮消费大数据新鲜出炉,报告显示了在生活服务O2O快速发展并逐渐回归理性的当下,餐饮O2O消费的新趋势。
女性吃货“碾压”男性
数据显示,男女餐饮消费比例为69.39%:30.61%,近70%的餐饮消费由女性贡献。
餐饮消费额前5%的用户中,也有近7成是女性,女性成为餐饮O2O领域的消费主力。
年轻人是餐饮消费主力军
58%的餐饮消费由25-34岁的青年消费者贡献,85%的餐饮消费由18-34岁的年轻消费者贡献。
餐饮消费额前5%的用户,65%为25-34岁的消费者。
从饭点看出不同城市的生活节奏
哈尔滨、青岛最悠闲:38.33%的哈尔冰消费者晚饭时间在18:00之前,31.53%的青岛消费者晚饭时间在18:00之前。
广深最疯狂:39.28%的深圳消费者晚饭时间在20:00之后,37.67%的广州消费者晚饭时间在20:00之后。
其中,帝都有31.79%的消费者晚饭时间在20:00之后。
北京不同地区饭点差异明显
北京:密云延庆最悠闲 建外大街忙过五道口
在20:00之后吃晚餐 朝阳东城平均30.81%
在18:00之前吃晚餐 密云延庆平均38.9%
跟老板说声“辛苦了”
20:00之后用晚餐的职业人群中,企业主和高层管理者吃得最晚,个体经营者时间最自由
贵阳盛产“土豪吃货”
餐饮平均客单价TOP5城市中,贵阳位列第一,一线城市仅上海、北京入围TOP5。
同一城市不同地区的客单价格差异明显:客单价最高的贵阳小河区是北京最高客单价西城区的2倍!
什么才是你的菜?
不同城市消费者钟爱的餐饮品类差异明显,折射出不同的城市文化。
上海整体更偏西化;
北京则是更加倾向于传统国人口味;
广州没有明显的倾向,更加多元化。
城市特色更吸引游客
全聚德名声在外:89.2%的消费者为外地游客;
北京本地人更青睐东来顺:41.74%的消费者为本地消费者;
做餐饮生意最怕心里没底,顾客的喜好、消费力、就餐原因、口味、接受能力等就是造成餐饮老板心里没底的因素,如果想了解顾客的需求,必然要做好市场调查。不过这些我们已经为你做了,各位餐饮老板可从以下数据看出餐饮消费者的需求。
Tips 1:工作以外的时间,朋友聚餐是最主要的消费行为。讲求实惠,轻松而有趣的氛围是朋友聚餐的首选佳地。每日12点和18点左右分别是午晚餐就餐高峰期,餐厅常常出现排队情况,而在餐点前后时段则经常坐不满。为使上座率最大化,餐厅可以根据不同时间段给予到店客人不同优惠。譬如如果在13-14点到店就餐,客人可享9折优惠;14--15点到店就餐可享8折优惠,以此类推。此外,在线订座高峰期比较集中在就餐前1--2小时。
Tips 2:餐饮业主力消费为上班族,营业者需提高上菜速度。飞速发展的社会使人的生活节奏越来越快,如何在食客的耐心时间内奉上美味佳肴,依旧是最大的话题。标准化的实现使食材前期处理的时间得以控制,若无法达到上菜的黄金时间(20分钟内),设计等待时间的小环节,降低食客的耐心也是个不错的方法。
Tips 3:口味与氛围是最食客最为关心的就餐因素,无疑味道是最为核心的竞争力。口碑、服务以及安全卫生是检验餐厅长久性的软性旗帜。
数据并不是市场的唯一指标,但我们可以通过数据得知市场的方向。无论是作为餐饮从业者还是餐饮爱好者,都可从中得到不少启发。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27