
使用Excel绘制t分布概率密度函数
关于t分布应用广泛,主要用于假设检验。关于使用Excel画出t分布的概率密度函数图表的问题,试答如下:
使用excel绘制t分布的概率密度函数,需要两列:1)自变量X,2)计算自变量X对应的t分布的概率密度函数。由于Excel中TDIST函数计算的是概率累积密度,不能计算概率密度值,所以借用伽马函数的自然对数。先从t分布的公式着手。
其中:ν 为自由度=n-1
Γ为伽马函数的的符号
t分布的平均数和标准正态分布一样均等于0
t分布的标准差=ν/(ν-2)
我们以随机变量t值为x轴(即视t为x),如何将自由度带入方程式求y值?因为t分布中涉及到GAMMALN()函数,而excel是提供GAMMALN()函数的,所以我们可以使用excel中的GAMMALN()函数来计算得到t分布的概率密度函数(参见【附录】)。经转换后其公式为:
t(X,df)=EXP(GAMMALN((df+1)/2))/(SQRT(PI()*df)*EXP(GAMMALN(df/2)))*(1+X^2/df)^(-1/2*(df+1))……………………………………公式(1)
由于对公式书写格式的顺序的理解不同,上述公式可能也会写成以下形式:
t(X,df)=EXP(GAMMALN((df+1)/2))*(1+X^2/df)^(-(df+1)/2)/SQRT(df*PI())/EXP(GAMMALN(df/2)) ……………………………………公式(2)
现以自由度(ν)=4为例,求t分布的图表,可由以下几步进行:
第1步 确定自变量取值范围
自由度=4时,t分布的方差为ν/(ν-2)=2,标准差= SQRT (2)=1.414
t分布的平均数和标准正态分布一样均等于0,同样与正态分布一样,几乎99%的t值会落在平均数`x±3个标准差之内,即落在区间(`x-3σ,`x+3σ)之间,所以横轴的取值范围在-4.2~4.2之间。
第2步 在Excel单元格中输入自变量
在A列中,在单元格A2中输入-4.2,在单元格A3中输入-4,递增0.2,选中单元格A2与A3,按住右下角的填充控制点一直拖到单元格A44是4.2为止,A列的这些数据就作为随机变量t的取值。如表-1所示:
表-1
第3步 在单元格B2中输入计算t分布的概率密度函数的公式
对于公式(1),由于自由度(ν)=4 ,则由df=4代入;自变量X就是单元格A2的值,所以按Excel相对引用的规则,X由A2代入即可,于是单元格B2内容是
=EXP(GAMMALN((4+1)/2))/(SQRT(PI()*4)*EXP(GAMMALN(4/2)))*(1+A2^2/4)^(-1/2*(4+1)),如表-2所示:
表-2
上述公式如按公式(1)的理解顺序,单元格B2内容可以写成:
=EXP(GAMMALN((4+1)/2))*(1+A2^2/4)^(-(4+1)/2)/SQRT(4*PI())/EXP(GAMMALN(4/2))
结果是一样的。
第4步 复制公式
按住单元格B2右下角的填充控制点,向下一直拖曳到B44,将B2的公式填充复制到B列的相应的单元格,如表-3所示:
表-3
第5步 由于相对引用的规则,A列的自变量会自动被公式相对引用计算,结果如表-4所示:
表-4
上述表-3是为了说明公式的复制,而特意在“工具”-“选项”-“视图”中将“公式”勾选,从而使公示内容全部显示出来。实际操作中,如表-4一样,公式的表达式不会显露,只有计算的结果会出现。至此已完成自由度为4的t分布概率密度函数表。
第6步 作t分布概率密度函数图
选择A1:B44,选“图表向导”-“标准类型’-“XY散点图”(平滑线),如图-1所示:
图-1
第7步 输入标题,调整字号、线型等格式,完成t分布概率密度函数图,如图-2所示:
图-2
如将上图的图表类型换成二维面积图,则如图-3-1(2003版)和图-3-2(2010版)所示:
图-3-1
图-3-2
在Excel 2003版中面积图数据系列格式的图案的内部填充格式没有透明的设置,也不能使用柱形图那样用预先制作的透明图片填充,此类效果可以在2007版与2010版中轻易实现。如为了在2003版中突出视觉效果,可以尝试使用三维面积图。如将上图的图表类型换成三维面积图,则如图-4-1(2003版)和图-4-2(2010版)所示:
图-4-1
图-4-2
为了方便调整不同的自由度参数值观察图形变化,在Excel数据表中可在第一行的某几个单元格如E1、F1、G1输入不同参数,然后在公式引用这几个参数时使用不同的方式:列数据为相对引用,而行数据为绝对引用,如E$1、F$1、G$1。而A列自变量值则使用:列数据为绝对引用,而行数据为相对引用,如$A2、$A3、$A4等。
数据表输入截图如图-5:
图-5
在公式输入后,选择单元格区间A1:D44,在同一图表作出三种不同自由度的平滑曲线的散点图,可见随着自由度的变大,t分布越向Y轴集中如图-6所示:
图-6
【附录:关于GAMMALN()函数和EXP()函数】
•函数 GAMMALN 的计算公式如下:
伽马函数Γ(x)是个定积分,无法直接绘图,可由GAMMALN()函数和EXP()函数,并利用对数恒等式:
间接求得,下面对以上内容使用Excel中的相关文字加以说明。
GAMMALN函数的作用: 返回伽玛函数Γ(x)的自然对数。
语法:
GAMMALN(x)
X 为需要计算函数 GAMMALN 的数值。
GAMMALN(x)=LN(Γ(x))
说明:
如果 x 为非数值型,函数 GAMMALN 返回错误值 #VALUE!。
如果 x ≤ 0,函数 GAMMAIN 返回错误值 #NUM!。
数字 e 的 GAMMALN(i) 次幂等于 (i-1)!,其中 i 为整数,常数 e 等于 2.71828182845904,是自然对数的底数。
GAMMALN(8)=8.525161
EXP(GAMMALN(8))=5040=(8-1)!=FACT(7)
FACT(N)为返回N-1的阶乘(N-1)!=1×2×3×4×…×(N-2)×(N-1)的函数(其中N为自然数)
关于EXP()函数: EXP()返回 e 的 n 次幂。常数 e 等于 2.71828182845904,是自然对数的底数。
语法
EXP(number)
Number 为底数 e 的指数。
说明
若要计算以其他常数为底的幂,请使用指数操作符 (^)。
EXP 函数是计算自然对数的 LN 函数的反函数。
EXP(1)=2.718282(e的近似值)
EXP(2)=7.389056
EXP(1)=20.08554
EXP(LN(3))=3
于是为求伽马函数Γ(x)首先要回忆一个最基本的恒等式:
即可得:
把该恒等式用于伽马函数的取得,可以由以下两步进行:
先用GAMMALN(x),取得自然对数;
再用EXP(GAMMALN(x)),取得伽马函数的值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13