京公网安备 11010802034615号
经营许可证编号:京B2-20210330
几种提高大数据分析价值的方法
这几年来,我们生活似乎充满了大数据,我们可以通过对大量数据加以分析,政府、企业和学者等可以找到有价值的东西,从而提升我们的生活水平,改善我们的生活和工作方式。越来越多的企业利用大数据分析工具找到发展趋势和适合企业发展的方法,从而为合伙人带来利益。
大数据
数据集的内存都是以千兆字节计算的,因此要对如此巨大的数据进行分析也是一项挑战,并且往往都有时间要求,只有对数据快速的解读和分析才能更快做出决策。
如果找不到适宜的分析工具,那么大数据的管理和分析就非常浪费时间。这里提供几种提高大数据分析价值的方法:
1. 数据融合
成功的大数据分析可以使用户应对工作中的困难,例如发现业务计划和工作中的缺陷和失误。它甚至可以将新的细分市场进行拆分,企业可以提供新的产品和服务。要想做到这些,就需要从各种资源得来的数据中抓住重点从而做出重要决策。
在数据分析中,时间至关重要。很多企业领导者和决策制定者需要实时的信息来快速做出决定。但是据估算,大约80%的时间都花在了准备和整理数据上。这样一来真正的分析工作只占20%。
因此高效的处理工作非常重要,例如数据分析的提取、转换和加载过程(ETL)。我们认为,2015年ETL处理手段将被更多企业加以利用,这是一种更简洁的数据准备过程,同时不需要过多的IT技术。
一个好的ETL工具可以将从多个来源获取的大数据融合在一起,也包括公共数据。它让用户的注意力集中到一个源头,获得相关性更高的信息,提高工作效率。同时可以确保用户的信息来源是唯一的,降低错误沟通的风险。
据统计,数据量每2-3年时间就会成倍增长,这些数据蕴含着巨大的商业价值,而企业所关注的通常只占总数据量的2%-4%左右。因此,企业仍然没有最大化地利用已存在的数据资源,以致于浪费了更多的时间和资金,也失去制定关键商业决策的最佳时机。
于是,企业如何通过各种技术手段,并把数据转换为信息、知识,已经成了提高其核心竞争力的主要瓶颈。而ETL则是主要的一个技术手段。目前,ETL工具的典型代表有:Informatica、Datastage、OWB、微软DTS、Beeload、Kettle……
2. 沟通无障碍
就像之前说过的,大数据分析工具可以帮助企业解决商业难题。从业人员也许能很好的理解这些问题,但IT人员却不能完全理解,这样就不能提供和专业需求相匹配的分析报告。再加上沟通不顺畅,领导层就无法及时得到有用信息,也就无法快速做出决策。
如果技术人员能够使用这种自助服务分析工具,就能够找到问题所在并做出可以弥补漏洞的决定。此外,他们还可以将数据同其他开放信息结合在一起,挖掘细分市场。企业还可以共享IT资源来发掘更多的数据信息。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27