
新常态下运用大数据
近年来,在全球网络信息技术的飞速发展大背景下,税务系统信息化蹄疾步稳,金税三期、增值税发票管理系统等各类信息化系统逐一登场,税务系统各类信息和数据存量正在酝酿爆炸式增长。随着人类社会开始迈入大数据时代,税务系统的庞大数据积累也为税收治理能力建设带来了全新的机遇和挑战。
一、大数据之路:税收治理能力建设之势(一)“大数据”概念的界定
研究机构Gartner认为“大数据”是需要新的处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据存在4V特点:一是Volume(大量),指数据体量大,大数据集以PB为计量单位;二是Velocity(高速),指获取数据和分析数据的速度快;三是Variety(多样),指数据类型繁多,来源于不同的渠道;四是Value(价值),指通过数据处理发现规律进而产生价值。简而言之,大数据通过对海量数据交换、收集、整合、挖掘,发现前所未见的规律和关联,从而为决策提供依据,产生新的价值。随着政府信息化建设的深入和国家互联网+战略的布局,社会治理方面的数据已开始呈现几何级数增长,为政府解构虚拟世界与现实世界间的复杂关系,获得更为全面和深刻的洞察能力提供了前所未有的潜力和空间。2015年9月,国务院印发《促进大数据发展行动纲要》,系统部署大数据发展工作,国家治理的大数据时代已初露曙光。
(二)大数据时代税收治理能力建设的机遇
从税收收入的增长来看,1994年,全国税收收入总量为5126.88亿元,2014年为103768亿元,增长19.2倍。收入的增长必然伴随税收管理数据量的日益增长。从税收信息化进程来看,全国税务系统已经形成了总局、省局、地市局、区县局的四级广域网,几乎所有的纳税户都被纳入信息化系统加以管理,税务机关掌握了纳税人海量的数据信息。各级税务机关还通过综合治税平台建设,通过工商、海关、银行、电力系统、房产管理部门等掌握了和纳税人生产经营有关的第三方涉税数据。根据2010年前后“金税三期”立项需求的不完全统计,当时全国国税部门的数据量约为18TB左右,地税部门数据量约为13TB左右,并且还在以每月300GB左右的速度递增。这对新常态下的税收治理能力的提升显然是有特殊价值的。
第一,大数据有助于形成税收收入稳定增长的长效机制。在新常态下,我国的经济增长速度从改革开放前32年年均增长9.9%的高速增长转为7%—8%的中高速增长。经济决定税收,近年来,税收收入增速由过去的两位数增长滑落为个位数增长。建立新常态下税收收入稳定增长长效机制的需求日益迫切。因此要进一步深化税收分析,实现税收工作的科学决策。而海量涉税数据与经济、税收密切关联,蕴含潜在规律。运用大数据技术实现对规律的深入洞察将支持税收工作的科学决策;要不断提高税收征管质效。而通过对海量涉税数据的深度整合、分析,有助于预测税收变化,查找薄弱环节,并推动税收风险管理,有助于最大限度地降低税收流失风险。
第二,大数据有助于推进依法治税。依法治税是新常态下做好税收工作的规范保障。依法治税以税收立法为基础,税收立法的科学设计以对法治主体、客体、对象科学和全面的认知为前提。大数据技术将为社会经济发展规律提供更为深刻的洞见和更广阔的视域,提升立法科学性和前瞻性。依法治税以税收执法为保障。大数据急速增长的数据和迅速的数据分析将有利于税务机关快速掌握执法对象的动态,并增强执法的针对性和准确性,迅速研判执法需求和举措;大数据广泛全面的数据来源将为税收执法中的取证提供有效的手段;大数据包含内容的丰富及细致的洞见还将为预防执法当中的腐败及暗箱操作提供了可能。
第三,大数据有助于提升纳税服务水平。在经济新常态下,各种新的经济增长点不断涌现,纳税人的需求日益多样。而大数据为纳税服务适应新常态提供了机遇。基于大数据应用的纳税服务智能化,通过对纳税人行为的主动分析可以为纳税人提供个性化、专业化的服务。借助移动云数据等大数据的环境的产物能进一步丰富纳税服务渠道,为纳税人提供便捷、安全、贴心的涉税信息服务的同时,提高纳税人涉税行为信息采集的广度和精度;构建基于大数据分析的纳税人关系管理系统,运用纳税行为多维度特征分析结果,结合分类分级管理要求为纳税人提供专业化、智能化的服务模式和服务内容;结合大数据的数据开放思维完善纳税信息公开渠道,实现行政及执法信息的公开、透明,使纳税人感到税收公平,增进纳税遵从。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13