
1、线性回归
线性回归就是使用下面的预测函数预测未来观测量:
其中,x1,x2,...,xk都是预测变量(影响预测的因素),y是需要预测的目标变量(被预测变量)。
线性回归模型的数据来源于澳大利亚的CPI数据,选取的是2008年到2011年的季度数据。
rep函数里面的第一个参数是向量的起始时间,从2008-2010,第二个参数表示向量里面的每个元素都被4个小时间段。
year <- rep(2008:2010, each=4)
quarter <- rep(1:4, 3)
cpi <- c(162.2, 164.6, 166.5, 166.0,
166.2, 167.0, 168.6, 169.5,
171.0, 172.1, 173.3, 174.0)
plot函数中axat=“n”表示横坐标刻度的标注是没有的
plot(cpi, xaxt="n", ylab="CPI", xlab="")
绘制横坐标轴
axis(1, labels=paste(year,quarter,sep="Q"), at=1:12, las=3)
接下来,观察CPI与其他变量例如‘year(年份)’和‘quarter(季度)’之间的相关关系。
cor(year,cpi)
cor(quarter,cpi)
输出如下:
cor(quarter,cpi)
[1] 0.3738028
cor(year,cpi)
[1] 0.9096316
cor(quarter,cpi)
[1] 0.3738028
由上图可知,CPI与年度之间的关系是正相关,并且非常紧密,相关系数接近1;而它与季度之间的相关系数大约为0.37,只是有着微弱的正相关,关系并不明显。
然后使用lm()函数建立一个线性回归模型,其中年份和季度为预测因素,CPI为预测目标。
建立模型fit
fit <- lm(cpi ~ year + quarter)
fit
输出结果如下:
Call:
lm(formula = cpi ~ year + quarter)
Coefficients:
(Intercept) year quarter
-7644.488 3.888 1.167
由上面的输出结果可以建立以下模型公式计算CPI:
其中,c0、c1和c2都是模型fit的参数分别是-7644.488、3.888和1.167。因此2011年的CPI可以通过以下方式计算:
(cpi2011 <-fit$coefficients[[1]] + fit$coefficients[[2]]*2011 +
fit$coefficients[[3]]*(1:4))
输出的2011年的季度CPI数据分别是174.4417、175.6083、176.7750和177.9417。
模型的具体参数可以通过以下代码查看:
查看模型的属性
attributes(fit)
$names
[1] "coefficients" "residuals" "effects" "rank" "fitted.values"
[6] "assign" "qr" "df.residual" "xlevels" "call"
[11] "terms" "model"
$class
[1] "lm"
模型的参数
fit$coefficients
观测值与拟合的线性模型之间的误差,也称为残差
residuals(fit)
1 2 3 4 5 6 7
-0.57916667 0.65416667 1.38750000 -0.27916667 -0.46666667 -0.83333333 -0.40000000
8 9 10 11 12
-0.66666667 0.44583333 0.37916667 0.41250000 -0.05416667
除了将数据代入建立的预测模型公式中,还可以通过使用predict()预测未来的值。
输入预测时间
data2011 <- data.frame(year=2011, quarter=1:4)
cpi2011 <- predict(fit, newdata=data2011)
设置散点图上的观测值和预测值对应点的风格(颜色和形状)
style <- c(rep(1,12), rep(2,4))
plot(c(cpi, cpi2011), xaxt="n", ylab="CPI", xlab="", pch=style, col=style)
标签中sep参数设置年份与季度之间的间隔
axis(1, at=1:16, las=3,
labels=c(paste(year,quarter,sep="Q"), "2011Q1", "2011Q2", "2011Q3", "2011Q4"))
预测结果如下:
![]()
上图中红色的三角形就是预测值。
2、Logistic回归
Logistic回归是通过将数据拟合到一条线上并根据简历的曲线模型预测事件发生的概率。可以通过以下等式来建立一个Logistic回归模型:
其中,x1,x2,...,xk是预测因素,y是预测目标。令
,上面的等式被转换成:
使用函数glm()并设置响应变量(被解释变量)服从二项分布(family='binomial,'link='logit')建立Logistic回归模型,更多关于Logistic回归模型的内容可以通过以下链接查阅:
· R Data Analysis Examples - Logit Regression
· 《LogisticRegression (with R)》
3、广义线性模型
广义线性模型(generalizedlinear model, GLM)是简单最小二乘回归(OLS)的扩展,响应变量(即模型的因变量)可以是正整数或分类数据,其分布为某指数分布族。其次响应变量期望值的函数(连接函数)与预测变量之间的关系为线性关系。因此在进行GLM建模时,需要指定分布类型和连接函数。这个建立模型的分布参数包括binomaial(两项分布)、gaussian(正态分布)、gamma(伽马分布)、poisson(泊松分布)等。
广义线性模型可以通过glm()函数建立,使用的数据是包‘TH.data’自带的bodyfat数据集。
data("bodyfat", package="TH.data")
myFormula <- DEXfat ~ age + waistcirc + hipcirc + elbowbreadth + kneebreadth
设置响应变量服从正态分布,对应的连接函数服从对数分布
bodyfat.glm <- glm(myFormula, family = gaussian("log"), data = bodyfat)
预测类型为响应变量
pred <- predict(bodyfat.glm, type="response")
plot(bodyfat$DEXfat, pred, xlab="Observed Values", ylab="Predicted Values")
abline(a=0, b=1)
预测结果检验如下图所示:
由上图可知,模型虽然也有离群点,但是大部分的数据都是落在直线上或者附近的,也就说明模型建立的比较好,能较好的拟合数据。
4、非线性回归
如果说线性模型是拟合拟合一条最靠近数据点的直线,那么非线性模型就是通过数据拟合一条曲线。在R中可以使用函数nls()建立一个非线性回归模型,具体的使用方法可以通过输入'?nls()'查看该函数的文档。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13