
大数据挖掘价值在哪里
伴随着中国经济的迅速增长,大数据成为引领中国经济社会变革的关键,“互联网+”“中国制造2025”“一带一路”与“大数据”一脉相承,催生着中国产业结构与商业模式的变化。
一、互联网+
所谓“互联网+”,是指以互联网为主的一整套信息技术(包括移动互联网、云计算、大数据、物联网等配套技术)在经济、社会生活各部门的传播、应用,并不断促使数据流动释放价值的过程。
“互联网+”之生产要素构成,数据资源。2015年,互联网已经进入新的拐点,“互联网+”开启了大数据时代的大门。所有数据和信息在云端的存储是这一时代来临的标志。移动互联网、物联网、车联网催生的各种智能硬件,拥有着比PC互联网更加实时且高效的数据采集能力。海量数据正在生产生活众多领域不断产生、积累和变化,大数据由此也从概念认知走向实践认知。随着数据呈现出爆发性增长的态势,大数据已经渗透到各行业的业务领域,成为重要的生产要素,大数据的演进与生产力的提高有着直接的关系。所以,数据资源正和土地、劳动力、资本等生产要素一样,成为促进经济增长的基本要素。
“互联网+”之生产要素流通,数据交互。随着互联网的飞速发展,社交网站、社交软件、交流群等正在发生质的变化。“互联网+”改变了数据要素交换的速度与方式,使数据要素发生数量化的、结构化的、价值化的、规模化的变化,从而使生产发生天翻地覆的变化。此外,“互联网+”进一步推动了DT时代的到来,“云计算+大数据”成为新的生产工具,而数据本身成为新的劳动对象。在新的数据驱动交易模式下,数据的投入远比物质投入要大,大数据通过互联网对公众公开共享,激发了人们的创新潜力,促进了新创业模式的产生。
“互联网+”之生产要素价值,数据应用。随着网络速度的显著提升和计算机能力的增强,大数据应用迎来了新的契机。同时,社交网络数据、机器数据等分析需求的释放,使得大数据产业兴起的外部环境形成。数据作为诸如电子商务数据、金融交易数据等必要驱动成分的同时,数据产品的研发更为数据资源的汲取提供了新的渠道。由于“互联网+”的推动,海量数据的积累和交换以及分析与运用,极大地促进了生产效率的提高,为充分挖掘数据要素的价值提供了超乎寻常的力量。根据数据研究显示,以“数据驱动型决策”模式运营的企业,其生产力普遍可以提高5%~10%,由此可看出,数据作为生产要素,愈发显示出其价值增值的优势。
二、中国工业4.0
放眼全球,发达国家利用技术优势,已然开始推进工业4.0的脚步:德国提出了“工业4.0”战略,努力探索未来工业生产的新途径;美国政府喊出“再工业化”“能源互联网”等口号,推出了一系列“先进制造业”计划;而日本、韩国也利用智能技术准备迎头赶上。
“中国工业4.0”,始于互联。随着互联网时代的到来,“连接”成为各行各业的一个关键点,“中国工业4.0”必将顺应潮流,使“连接”无处不在:将所有的设备、生产线、工厂、供应商、产品和客户紧密联系在一起,通过无处不在的传感器、嵌入式终端系统、智能控制系统、通信设施等,使得现实世界与数字世界紧密联结在一起,融会贯通成一个智能网络,持续不断地保持数字信息的交流。
“中国工业4.0”,高度集成。随着互联网技术的全面普及,企业能够有效地对生产、运营、人力、资金流等进行内部管理,各种信息以大数据的形式集中;行业内部、行业之间彼此透明程度加强,企业彼此之间的联系无处不在,最终实现价值链上不同企业的资源信息的整合,实现了从产品设计、生产制造到物流配送、使用维护等产品全流程的管理与服务。
“中国工业4.0”,核心为数。技术的发展使得产品的生产、储存、运输、销售、使用、淘汰等数据可以被准确全面地记录、传输、处理和加工,促进产品的升级改进。而通过对大数据的审视,使得企业的运营数据被有效地获取处理,能够促使企业在研发、生产、运营、营销和管理方式上进行创新,为企业提供创新动力,同时可以使企业管理者和参与者以全新的视角审视价值链,为企业创造更多的战略优势。
“中国工业4.0”,转变为产。随着“工业4.0”时代的到来,物联网和务联网必将慢慢取代传统企业的互联方式并渗透到工业的各个环节,催生出更加智能化、个性化、人性化的生产模式,从而推动生产方式由大规模生产向个性化定制转型、由生产型制造向服务型制造转型,由要素驱动向创新驱动转型。
“中国制造2025”促使“中国工业4.0”顺利落地。“中国制造2025”将促使“中国工业4.0”时代的信息技术与制造技术深度融合,使中国制造业实现数字化、网络化、智能化制造;实现中国制造业的要素驱动转向创新驱动;由高资源消耗、大污染排放向绿色制造转变;在国际舞台的竞争力由低成本竞争转向高质量竞争。最终实现通过工业的发展使中国更加繁荣强大,并促使中国由制造大国向制造强国转变。
三、“一带一路”中国企业走出去
世界已进入物联网和务联网迅速发展时代,未来社会生活将以移动互联网为基础,借助大数据技术,最终形成三大数据中心——社会数据中心、家庭数据中心和个人数据中心。中国经过30多年的发展积累了巨大的能量,需要带动周边地区共同发展才能保持中国经济结构的平衡,“一带一路”顺势而出,带动亚洲地区的资源共享以及中国的发展繁荣。
大数据助力“一带一路”调研。随着大数据时代的来临,计算机技术、云储存技术、处理技术等飞速发展使得数据采集的规模、广度以及速度,数据的处理速度与准确性都得到全面的提高,促进“一带一路”调研价值飞速提升。在“一带一路”建设中,大数据调研可以成为决策的基础和前提。例如,高铁、港口和信息基础设施等投入修建的过程中,涉及沿线国家的生活习俗和民族风情、经济发展和政治稳定的状况均是决策过程中必须纳入思考范围的因素,通过前期调研,借助大数据,中央有关部门更好地在“一带一路”上开展公共外交,促进地区的人文交流,保证“一带一路”的顺利进行。
大数据助力“一带一路”协调。在大数据时代,资讯高度发达,数据随处可见。可以对数据进行整合,建立“一带一路”的大数据决策系统,将杂乱无章的数据进行整理、处理,通过建模分析、可视化分析等实现数据的价值与意义。通过借助于大数据决策系统,决策高层能够统揽全局,对“一带一路”的事务进行全面协调,通过系统的强大数据分析能力,判断未来的变化趋势,知晓沿线国家的政经动态,审查沿线国家内部的利益纠纷,全面规避“一带一路”建设过程中遇到的风险,有条不紊地推进“一带一路”建设。
大数据助力“一带一路”预警。大数据预警系统在专家的协助下,结合历史数据和国家现有数据,以建立可供参照的国家健康形态指标体系。预警系统的指标项目根据获取的数据量而定,通过大数据技术,项目指标将会越来越精确。之后把“一带一路”沿线国家的相关数据输入,与指标体系进行比对。当超过正常阈值时,决策预警系统就会发出警报,提醒决策者和专家关注出现的各种问题,以便采取正确的对策。
大数据挖掘价值巨大
随着用户对大数据价值的认可,各行业巨头都积极加大对大数据的投资,使得大数据渗透到更广阔的领域。无论是在医药行业,还是在制造业、零售业、服务业等,都有其巨大的社会价值和空间。
互联网时代,数据就是金钱。金融业、制造业、零售业都已拥有大量的数据,且正以几何级增长。对于电子商务企业来说,更大的潜在机会正隐藏于大数据中,通过大数据处理分析手段对海量数据进行深度挖掘与分析,可以让企业更加了解客户需求,进而提供个性化的商品和服务。据麦肯锡调查报告,零售商接触大数据不到3年,却可以利用它增加营业毛利超过60%。
2011年《纽约时报》报道了一个大数据商业应用成功的案例。美国第二大超市塔吉特(Target)希望抢占孕妇用品这一市场,于是进行了商业新模式的探索。营销人员希望建立一个能够确认怀孕4至6个月孕妇的数据模型,以便先于零售商获取用户怀孕信息。但是怀孕是非常私密的信息,数据分析部门想到了Target之前举办的“迎婴聚会”的用户登记表。通过建模分析对这些登记用户的消费数据进行处理,他们就发现了许多非常有用的信息。比如,在怀孕的前20周大量购买补充钙、镁、锌的保健品。依据这些信息,数据分析部门选出25种典型商品的消费数据以构建“怀孕预测指数”,通过这个指数,Target能够以最大的程度预测到用户的怀孕情况,让市场营销人员提前把孕妇优惠广告寄发给用户,并最终赢得了宝贵的客户资源。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11