京公网安备 11010802034615号
经营许可证编号:京B2-20210330
游戏数据分析核心数据和算法公式详解
一、运营数据
(1)平均同时在线人数(ACU: Average concurrent users):即在一定时间段抓取一次数据,以一定周期为期限;周期内的ACU可取时间段的平均数据。[例如:系统每一小时抓取一次数据,全天24小时共24个不同时刻的在线数据,则每天的ACU是这24个数据的平均值(每个公司有每个公司的定义,一般ACU取平均值,若针对某一时刻,则直接在某时刻内直接统计用户数)
(2)最高同时在线人数(PCU:Peak concurrent users):即在一定时间内,抓取最高在线数据。(例如:单天最高在线:系统每小时统计一次数据,全天24小时共24个不同时刻的在线数据,则24个时间段内最高的用户在线数据为PCU)
(3)充值金额(RMB):即在一定周期内充值总金额。
(4)元宝消费金额(RMB):即在一定周期内,玩家在游戏商城中的消费总金额(仔细看,充值金额与元宝消费金额有着明显区别,上者受活动影响,下者受商城道具需求影响。)
(5)每付费用户平均收益(ARPPU: Average Revenue Per Paying User:)相似于下载游戏的消费比率,(国内很多人以“ARPU”称呼,个人定义不同),此类数据主要衡量付费用户收益(公式:月总收入/月付费用户数)
(6)平均每活跃用户收益(ARPU: Average Revenue Per User):主要衡量游戏整体贡献收益;毕竟除了付费收益,活跃用户也能产生收益,(一般国内以此数据为核心,各家算法不同)(公式:月总收入/月活跃用户)(7)平均生命周期:平均生命周期:有新增账户在首次进入游戏到最后一次参与游戏的时间天数。比如记录某一个月,这个月里,每个新增用户的生命周期之和/MAU=平均生命周期。(8)LTV生命周期价值(LTV: Life Time Value):约定一个计算的生命周期值(比如上个月的平均生命周期,或者约定为15日,即这个月有15日登陆记录的账户数),符合这个生命周期条件的账户数中,充值金额的和/条件账户数。
(9)每日注册并登陆的用户数(DNU: Daily New Users):这个言简意赅,就不详谈了,直接从后台抓取即可。
(10)新登用户中只有一次会话的用户(DOSU: Daily One Session Users):这个也很简单,此类数据主要衡量新用户的质量,买量的可以参考一下。
(11)每日登陆过游戏的用户数(DAU: Daily Active Users):直接从字面就能了解了,一般从后台抓取。
(12)七天内登陆过游戏的用户数(WAU: Weekly Active Users):这个还是很好理解,就不废话了,此类数据主要衡量周变化。
(13)30天内登陆过游戏的用户数(MAU: Monthly Active Users):浅显易懂,主要衡量产量的粘性以及用户的稳定性。
(14)月流失率:(公式:30天前登陆过游戏,30天内未登陆游戏的用户数/MAU)
周流失率:(公式:7天前登陆过游戏,之后7天内未登陆游戏的用户数/WAU)
日流失率:(公式:统计日登陆过游戏,次日未登陆游戏的用户数/统计日DAU)
(15)30日留存率:新用户在首次登陆后的第30天再次登陆游戏的比例
7日留存率:新用户在首次登陆后的第7天再次登陆游戏的比例
3日留存率:新用户在首次登陆后的第3天再次登陆游戏的比例
次日留存率:新用户在首次登陆后的次日再次登陆游戏的比例
二、运营成本
(1)投入/运营成本(RMB):本月为推广游戏而投入的营销及市场费用金额
(2)产出/元宝消费金额(RMB):玩家周期内(日/周/月)在游戏中的消费总金额
(3)投入产出比(ROI):简而言之,就是说付出与回报是否成正比。(公式:本月的产出/本月的投入)
(4)单个活跃用户推广成本(RMB):(公式:本月投入/本月新增活跃用户数)
(5)单个付费用户推广成本(RMB):(公式:本月投入/本月新增付费用户数)
三、用户状态数据监控
(1)活跃用户数:对于活跃用户,每家定义各有不同.7天内有3天登陆过账号的便可成为活跃用户。
(2)新增活跃用户数:首次上线游戏的用户数
(3)流失活跃用户数:上期(7-14天)有过登陆,在本期(最近14天)未登陆的用户数。
(4)回流活跃用户数:上期(7-14天)未登陆,在本期(最近7天)有登陆的用户数。
(5)活跃用户流失率:(公式:(本月流失用户/上月活跃用户)*100%)
(6)活跃用户充值率:(公式:(本月活跃付费用户/本月活跃用户)*100%)
(7)活跃用户在线时长(单位/小时):(公式:当期(7天)所有活跃用户在线时长总和/当期(7天)活跃用户数)
(8)付费用户在线时长(单位/小时):(公式:当期(7天)所有付费用户在线时长总和/当期(7天)付费用户数)
(9)新增活跃用户充值率:(公式:(本月内有充值的新增登录用户/本月总新增登录用户)*100%)
(10)新增活跃用户高活跃率:(公式:(本月新增登陆用户中的高活跃用户数/本月新增登陆用户数)*100%)
四、活跃用户状态
(1)高活跃用户数:(个人定义:)当期(7天)内总在线时长大于或等于12小时的活跃用户数。
(2)新增高活跃用户数:(个人定义:)当期(7天)高活跃用户减去上期(7-14)高活跃用户数。
(3)流失高活跃用户数:(个人定义:)上期(7-14天)在线时长大于等于12小时,当期(7天)在线时间小于12小时的活跃用户数。
(4)回流高活跃用户数:(个人定义:)上期(7-14天)在线时间小于12小时,当期(7天)()在线时长大于等于12小时的活跃用户数
(5)高活跃用户流失率:(个人定义:)公式:(当期(7天)流失高活跃用户数/上期(7-14)高活跃用户数)*100%
(6)高活跃用户充值率:(个人定义:)公式:(当期(7天)有充值行为的高活跃用户数/当期(7天)高活跃用户数)*100%
(7)新增高活跃用户充值率:(个人定义:)公式(本月新增登陆用户中的高活跃用户数/本月新增登陆用户数)*100%
五、付费用户状态
(1)付费用户数:截止到统计日,所以曾经有过充值的用户总数。
(2)新增付费用户数:当期付费用户数减去上期付费用户数。
(3)活跃付费用户数(APC):当期(周/月)有过充值行为的用户数。
(4)流失付费用户数:上期有登陆行为,当期没有登陆的付费用户数。
(5)回流付费用户数:上期未登陆,在当期有登陆的付费用户数。
(6)付费用户流失率:当期流失付费用户数/上期活跃付费数。
(7)付费用户月平均充值次数:当期所有充值次数/当期付费用户数。
(8)付费用户月平均充值金额(RMB):当期充值总额/当期付费用户数。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07