京公网安备 11010802034615号
经营许可证编号:京B2-20210330
你也许会犯,营销人员使用数据分析的5个误区
许多公司可能都在顺应大数据发展的潮流,希望通过数据分析来指导营销的发展方向,但是他们是否能在实际的营销活动中实现数据的价值呢?
数据分析《大数据时代》的作者Victor教授说,人们应该知道如何从大数据中发掘价值,对数据的第一次使用只实现了其价值的冰山一角。许多公司可能都在顺应大数据发展的潮流,希望通过数据分析来指导营销的发展方向,但是他们是否能在实际的营销活动中实现数据的价值呢?借由数据分析来达到营销活动的成功对于没有经验的营销团队也许是个挑战。
以下是常常导致企业未能充分利用数据的五个误区。 1.未能充分利用人口统计信息
过去,营销人员只能通过传统的市场调查获取有关消费者和受众的性别﹑年龄﹑家庭收入等极为有限的信息。在今天这个数据采集和管理方式都大有进步的时代,获取信息和数据几乎不受限制,这种情况得到了颠覆性的改变。遗憾的是,即便能够获取到大量的信息,许多营销人员对数据的运用仍处于非常肤浅的阶段。
根据2013年TheNeustarGlobalMediaIntelligence的报告,零售营销人员根据消费者的家庭观念和购买汽车的品牌来进行目标市场定位的营销活动比未定位目标市场的营销活动相比,市场表现提升了500%。联想最近发现,通过个性化地定制网站广告能为联想提升30%的点击率,并增加40%的购买转化率。联想的研究显示,如果营销活动结合消费者的其他信息,比如他们的信用和兴趣,都能有效地促成购买转化。 2.关注错误的度量指标
数据的解读和运用需要和背景资料相结合,Facebook的粉丝数﹑App的下载量等看上去颇为壮观的数据很容易导致错误的数据分析,或者营造出成功的错觉。这些指标与那些更为深刻的行为数据(如导航路径﹑品牌偏好)相比,就显得苍白无力了。Silverpop曾经委托ForresterConsulting进行的一项研究发现,B2B营销人员利用行为数据将销售渠道扩大了34%,非行为数据导向的营销只能扩展26%。即便是营销活动的主要目标是提高品牌知名度,消费者对品牌的记忆度和参与度数据还是比网页的浏览数量更具研究价值。
3.忽略线下活动
传统的prospect-lead-customer销售漏斗模型已不再适用于当今顾客做出购买决定的方式。如今的营销活动贯穿了多种渠道,这就使得企业正在收集一些他们不常追踪或者分析的数据。由于现在企业都把关注的重点放在新的数字化指标上,这样很容易忽略或者误判线下的活动,比如把顾客在实体店的购买行为归功于线上广告。根据Twitter的一项研究,在线上与品牌产生互动的消费者更有可能在实体商店进行购买(平均能带来12%的销售增长)。o2o营销的未来发展趋势应该是线上互动以促进线下购买。线上和线下的无缝转换也需要通过数据库来进行管理,并根据数据分析的结果作出优化建议。如果没有像NeustarAKClosedLoop这样的数据分析工具,这些线下购买转化的原因很可能被看作一个巨大的谜团。
4.数据分析和营销行动脱轨
营销活动从策划到实施,每个阶段都应该和数据分析紧密结合,及时与企业各部门沟通,共享数据分析的结果。传统的营销团队行动滞后,常常用之后调查出的数据来支持他们已经做出的决定。相对来说,有远见的营销人员不仅仅运用数据对过去进行批判,而且能够预测未来。AmericanExpress使用预测性的分析和行为数据来识别高风险顾客,以减少损失。在过去,AmericanExpress会挑选出100名普通客户样本进行风险测评,现在他们使用了IBM推出的SPSS预测分析建模软件来辨别可能产生风险的客户。他们发现,软件模型识别流失风险的能力与之前相比提高了8.4倍。另外,预测性的数据分析能够在营销活动开始之前就推动ROI,并在营销活动进行中通过不断地调整来实现实时的效益最大化。
5.让未经培训的员工处理数据
在理想的状态下,数据能够促进文化转变,数据不仅仅运用在营销活动的每个阶段,而且贯穿企业的整个商业活动。同时,许多企业也会在处理数据的技巧上遇到麻烦。CompTIA与美国500名商业和IT界的管理人员进行访谈后发现,60%的参与者清楚地知道需要提高数据管理和分析的水平。准确严谨地使用数据需要一定的投入,企业对数据运用的投入包括:训练现有员工,聘请内部的专家,请教外部分析师或是购买新技术。没有付出就不会有回报,不要指望社交媒体的实习生就能轻松玩转数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12