京公网安备 11010802034615号
经营许可证编号:京B2-20210330
游戏产品如何进行数据分析?
首先,介绍下什么是AARRR模型。AARRR是Acquisition、Activation、Retention、Revenue、Refer,这五个单词的缩写,分别对应一款产品生命周期中的5个重要的环节:获取用户、提高活跃度、提高用户留存率、获取收入、自传播五个环节。不仅适用于游戏,也适用于工具。下面我们来简单讲解一下AARRR模型中每个环节关注的重要数据指标。
(1) 获取用户(Acquisition)
任何产品上线运营都会面临这一环节,新增用户量和CPA(cost per action)是这个阶段的主要指标。这两个指标和很多因素有关系,比如产品本身的目标用户群的大小、市场宣传、广告投放、产品是否有IP、产品名字、产品Icon和介绍、安装包大小等等很多因素有关系。现在移动游戏获取用户,主要通过各应用渠道和AppStore获得。移动游戏从各应用渠道获得用户多少的主要因素,是流量变现能力强弱,但是这个怎么理解呢?国内的各应用市场如应用宝、百度手机助手、360手机助手等等,广告资源和榜位都是依据流量赚钱的能力来的。比如说,相同的位置,如果放其它的游戏一天能带来50万收入,如果放我们的游戏一天能带来60万的收入,大家认为各渠道会放谁家的游戏呢?各应用渠道本质还是在经营流量,盈利能力强就会从各应用市场获得更多的用户。AppStore榜位会比较客观和公正一点,而且分几个榜单,付费榜、免费榜、畅销榜。各有不同的指标来决定榜位。
(2) 提高活跃度(Activation)
衡量用户的活跃度会有如下数据标准:DAU(日活跃度)、MAU(月活跃度)、使用时长、启动次数、峰值在线人数等,其中DAU、MAU这两个数据基本上说明了应用当前的用户规模大小。用户的活跃度也很重要,因为用户活跃的时候才能贡献收入。给大家讲一个真实的例子,2014年比较火的某款游戏,老板天天关注的数据指标就是DAU,说只要DAU大约百万我就能睡安稳觉,其实是有道理的,用户在,收入不管通过什么活动,新的消费等刺激下都能来。
(3) 提高留存率(Retention)
留存反应了用户的粘性和忠诚度,我们会统计各种留存、次日留存、七日留存、双周留存、月留存等。这个是我们在内部测试和外部小量测试阶段的重点关注指标,后面会重点介绍这个留存率。
(4) 获取收入(Revenue)
这个环节,要统计的指标有付费率、ARPU、ARPPU、消耗率、LTV等。反应用户的付费转化和付费能力等,我们会按照各渠道和推广活动去统计这个,可以检出不同渠道和推广活动的用户质量,这个后面会重点介绍下LTV的计算。
(5) 自传播(Reter)
自传播这块,暂时不太会去计算反应病毒传播能力的K因子,关注的比较多的是自然新增量,就是除广告投入带来用户外的新增量。对于要想打造爆款产品这个K因子太重要了。
下面,我们看下AARRR模型的应用,从各应用渠道是如何应用它来选择好的产品的。
S级是指特级,91比较看中自然新增、7日和15日留存、15天LTV即单个在15天内的收入贡献和月付费率,基本包含了AARRR模型各环节的指标。
PP助手比较看中推广注册,这个反应吸量的能力和注册转化率、次日留存和七天留存、月付费率、登陆ARPU,也基本包含了AARRR模型各环节的指标。
360A级数据指标,比较看中注册转化率和留存率,其实也是有道理的。注册转化率反应了流量的利用率,留存率反应了用户对产品的喜爱和忠诚度,有这个何愁收入不好呢?
下面着重介绍下留存率指标。
留存率大家比较熟悉,工作中也用的比较多,现在给大家介绍下新增留存率曲线。它的生成就是把各时间的留存率连接成一条曲线,新增留存率曲线是留存率的一种综合。
大家看到新增留存率曲线的价值了么?产品早期不太好估算LTV,我们工作中更多的是用多少天的LTV。用来核算广告投放的ROI,但是LT常用到。
LT,用户生命周期,我们每个季度都需要重新计算,因为是收入确认的一个重要参数,因为收入需要按照道具类型进行分摊,LT真实的计算会比这个复杂的多。大家可以理解下LT的基本的定义,不一定要会算。另外记住“新增留存率曲线的面积等于LT”,所以留存非常重要。
AARRR模型和留存率、LTV指标的介绍就介绍到这里,下面有四个思考题,大家一起讨论下。
思考题1:某产品活跃10%,周活跃70%,大家觉得是否靠谱?
答:是不靠谱的,因为日活跃10%,周活跃70%,用户会在一周内重复活跃的情况。所以假如日活跃是10%,周活跃肯定小于70%。
思考题2: 锁屏应用安装4000-5000万,日活跃200万左右,是否靠谱?
答:锁屏应用就是屏幕解锁,主要Android上比较多这种应用。大多数的用户不可能一天不使用手机吧,所以锁屏应用,它的日活跃定是比较高的,现在只有5%左右,所以答案肯定是不靠谱,要么安装量是虚的,要么用户卸载的比较多。才会导致几千万的安装锁屏应用只有200万左右的活跃。
思考题3:要做爆款应用比如脸萌、足迹、小咖秀等,从AARRR模型来看,需要什么样的数据指标?
答:主要是自传播能力,K因子高,在短时间能大量的曝光,所以成了爆款,但是他们都有一个问题,就是留存不好。
思考题4:要做大规模用户应用比如Clean master、美图秀秀、Go Launcher等,从AARRR模型来看,需要什么样的数据指标?
答:一个大成的产品,从数据看肯定是各方面都比较好,另外,大家有没有看傅盛关于介绍战略的文章,关键词:预测、破局点、all in,all in的前提还是数据的计算。
——————————Q&A———————————-
Q1:详解下思考问题4,需要哪些数据?为什么需要正常的数据特征?
A: 来简单地说,单个LTV是否远远大于CPA 。复杂点说,就是大众,刚需,痛点、高频,后面对于的数据比较好。
Q2:我们这个Ap是不是比较极端,我们是运营商的手机营业厅,到月底用户登录的就比较多,平时就很少,平均下来日几个点,但月60、70%,是不是可以说工具类的各种纬度活跃量都不是很客观?
A:这个问题说的不是很清楚,不同的产品类型会有不一样的数据特征,这个是和业务相关的,比如你说的营业厅的应用,就会存在日活跃很低,月活跃因为月低用的比较多,月活跃比较高的情况。
Q3:刚刚您介绍了渠道的游戏评级标准,想了解下游戏CP有渠道评级标准吗?指标是什么呢?
A:CP对于各渠道是比较熟悉的,但是一般还没有形成标准,CP关注渠道的数据指标,主要是能导多少用户量,付费能力。
Q4:游戏为了获得渠道更好的资源位,自充是行业很常见的操作方式?
A:渠道评价游戏的标准,不仅仅是收入,还有其它数据指标,所以自充值的影响也是一段时间的,所以不是很常有吧,但是听过有游戏为了进入AppStore畅销榜有自充值行为,识别这种行为,就看它的免费榜和付费榜是否一致。
Q5:我想问个问题,老师怎么计算流失周期的啊,然后一般可以利用流失数据来做产品的什么优化啊?老师给他举个例子说明吧 。
A:找出流失原因,一个一个解决了。 给你举个例子吧,我们在以前的一款页游,在用户注册和登录的过程中,注册转化率比较低,我们就记录每个步骤的转化率,找到转化率比较低的位置,发现那个步骤的资源比较大,在用户网络情况不好的情况下,下载比较慢,导致用户直接关闭了。这个还是需要具体的问题,具体分析。
Q6:还有个问题,老师游戏运营是怎么针对用户进行分层运营的?
A:游戏用户,有RMB和非RMB玩家。RMB玩家又分大R和小R。运营活动,肯定会有相同的,也有针对性的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01