京公网安备 11010802034615号
经营许可证编号:京B2-20210330
通过数据解释过去
数据的作用主要体现在两方面:解释过去和预测未来。本篇文章介绍如何通过数据解释过去发生的事情。包括过去发生了什么事情?这些事情有什么样的规律?驱动因素是什么?是否有明显的改进或提升?等等。在开始之前我们先来介绍下数据的获取来源以及数据的特点和分类。
数据来源及分类
我们以网站的数据为例,网站的数据来自于服务确日志和网站分析工具。下面是来自网站分析工具Google Analytics的一条日志信息。在这条日志中包含了一些用户及网站的信息。Google通过对这些信息的处理产生数据,并最终生成我们所看到的网站数据报告。
我们将日志进行拆分展现,以便更加清晰的看到日志中所包含的具体信息。可以看到,每一条信息都是以一对参数和值的形式进行记录的。例如,参数t表示这条日志的类型,值pageview表示这是一条PV日志。(Google Analytics中除了PV日志,还包括event日志等其他多种日志类别)说明每条这样的日志都表示一次页面浏览。又如参数dl表示用户当前浏览的页面地址,值表示页面的具体URL。
通过观察日志中的信息可以发现,日志中所包含的信息分为两大类,也就是参数后面的值类型。一类是类别变量,这在Google Aanalytics中参数值类型为text或boolean,例如客户ID,地理位置和屏幕分辨率等。另一类是数值变量,这在Google Analytics中参数值类别为integer或currency,例如事件价值,商品数量,交易收入等。详细信息请参考《Measurement Protocol 参数参考》
类别型变量
数值型变量
在了解了Google Analytics日志中信息的分类后,我们开始分布对每个类别信息的分析方法进行说明。包括每一个类别信息的分析方法和它们所适合的图表展现形式。首先分布介绍类别型变量和数值型变量的分析方法。
单因素分析
这里再啰嗦两句,很多时候我们面对数据无法获得有用的结果或洞察,原因不是因为缺少数据,而是因为数据太多。这里我们将信息进行拆分,每次只针对一类信息进行介绍,发现其中的规律及驱动因素。避免迷失在大量无用的数据中。
前面我们说过,Google Analytics日志收集到的信息分为两类,类别变量和数值变量。下面我们分别来看下这两类信息的分析方法。
类别变量
类别变量指日志中以文本或布尔值的形式记录的信息。这类信息本身不是数据,不能直接进行运算。需要进行处理后才能转化为我们常见的数据形式。例如下面的浏览器信息。每个用户都会使用不同品类的浏览器。当用户访问网站时我们以文本形式记录下了这些浏览器的品牌信息。这类信息就属于类别变量。下面是一组浏览器的品牌信息列表。
对于浏览器品牌这样的类别变量,我们会通过计算生成频率和占比数据。用来分析不同浏览器品牌的流行及重要程度。下面是经计算获得的不同浏览器品牌出现的次数以及在所有浏览器品牌中的占比情况。可以发现,Chrome在所有浏览器中出现次数最多,为30次。占比在所有浏览器中超过50%。说明Chrome在样本数据中是较为流行的浏览器品牌。
柱状图,条形图和饼图或环形图是对类别变量频次和占比数据最好的展现形式,下面我们分别使用的条形图展示了不同浏览器品牌出现的频率,使用环形图展示了不同浏览器品牌的占比情况。
数值变量
数值变量是指日志中以数值形式记录的信息。这些信息可以直接作为数据,或者通过相互间的运算生成新的数据。例如下面的浏览深度是通过到访网站次数和浏览页面总次数计算获得的。
对于数值变量,我们通常使用描述统计来观察这组数据的集中程度和离散程度。用来描述集中程度的指标有平均数,中位数和众数。描述离散程度的有方差和标准差。通过描述统计提供的一系列指标,我们可以发现并描述数值的规律。对于浏览深度数据,通过描述统计可以发现,浏览深度集中在1.5个页面左右。标准差为0.3,表示整体数据离散程度不高。描述统计可以在Excel中数据菜单下的数据分析功能中找到。
除了描述统计外,第二个要分析的是数值的分布。其实前面的平均数,标准差,峰度和偏度几个指标已经大体描绘出了变量分布的形态,但下面的直方图更加直观的展示了数据分布。从直方图中可以看到浏览深度数据符合正态分布,概率最高的是1.5次。换句话说,浏览深度数据集中在1.5页左右,并且较为平稳,变化不大。浏览较多和较少页面的都不多。最少的页面浏览深度为1.12页。最多的页面浏览深度为2.29页。
双变量分析
在前面的单因素分析中,我们分别介绍了类别变量和数值变量的分析方法,下面我们介绍双变量的分析方法。双变量分析简单来说就是单因素的组合。我们把双变量分为三类,分别为类别变量&类别变量,数值变量&数值变量和类别变量&数值变量。分析两个变量间的关联和差异。
类别变量&类别变量
第一个双变量是类别变量&类别变量。下面是一组客户来源和是否成交情况的列表。记录了每个客户的来源以及最终是否成交的情况。其中客户来源分为线上和线下两个来源,是否成交中已成交的记录为”是”,未成交的记录为”否”。对这组数据我们使用卡方检验来分析线上与线下来源在成交率上是否有显著差异。
卡方检验的方法我们之前有单独的文章进行介绍,感兴趣的朋友可以查看详细的计算过程。这里我们粗略说明下计算过程和结果。首先,生成频率表计算出不同来源的成交与未成交数量。并由此计算出线上和线下来源的成交率数据。
第二步,根据前面频率表中的数据,按照卡方检验的方法计算出线上和线下来源成交与未成交的期望值数据。以下是经过计算获得的期望值数据。
最后,通过使用频率表和期望值的数据进行计算,线上和线下的成交率存在显著差异。具体数据请参考下表。
数值变量&数值变量
第二个双变量是数值变量&数值变量,下面是一组广告消费和点击量的数据。记录了在广告平台上的消费情况和获得的点击量数据。对于这组数据我们通过关联分析来分析消费和点击量之间的关联。
相关分析的方法有很多种,我们之前单独有文章介绍过《5种常用的相关分析方法》。这里使用相关分析来分析消费和点击量数据间的关联。通过Excel数据菜单中的数据分析功能获得消费和点击量的相关性数据为0.95,说明消费和点击量高度正相关。
对于两组数值变量,最好的展现形式是使用散点图。下面通过散点图描述了点击量与消费的关系。随着消费的增长,点击量也随之增长。在Excel的散点图中,选择添加趋势线可以自动生成回归方程和判定系数R方。点击量有91%的变化可以被解释。
类别变量&数值变量
第三个双变量是类别变量&数值变量,下面是一组每日访问量数据,分别对应了每一天网站获得的访问量数据。其中日期是类别变量,访问量是数值变量。我们在前15天和后15天分别使用了不同的推广策略。下面将分别使用Z建议和T检验分析访问量数据前后变化差异的显著性。
首先将30天的访问量数据按投放策略分为前后两组,每组各15天,然后计算出每组数据的均值和方差。具体数据如下表所示。
然后在Excel的数据菜单中选择数据分析,使用其中的Z检验进行差异显著性检验。经检验,在95%的置信区间下两组访问量数据间不存在显著性差异。
T检验和Z检验类似,我们在Excel对数据菜单中选择数据分析,使用T检验对两组访问量数据进行差异显著性检验,经检验在95%的置信区间下两组访问量数据不存在显著差异。
最后,总结一下整篇文章的内容。我们将信息分为两类,类别变量和数值变量,类别变量是以文本或布尔值记录的信息,数值变量是以数字记录的信息。在单独对这两类信息进行分析时,类别变量通常使用频率和占比的方法,数值变量通常使用藐视统计和数据分布的方法进行分析。在双变量分析中,主要分析两个变量间的关联和差异的显著性。双变量分析分为三大类,分别为类别变量&类别变量,数值变量&数值变量和类别变量&数值变量。第一种类别变量&类别变量通过卡方检验分析数据间差异的显著性。数值变量&数值变量通过线性相关分析发现数据间的关系。类别变量&数值变量通过Z检验和T检验分析数据间差异的显著性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12