
大数据如何在商业银行战略规划中发挥作用
近两年,大数据如何应用一直是各方探索的重点。所谓大数据,是在计算机存储能力、计算能力、计算技术、计算速度大幅增长的基础上,对海量数据复杂处理的产物。大数据常常被定义为海量数据“需要新处理模式”才能发挥巨大价值,这也说明其是计算机技术高速发展的产物。
对金融机构来讲,大数据的运用也是一个亟待挖掘的“富矿”。今天开始,老张用一个系列来聊一下大数据与商业银行管理的关系。第一篇我们先来谈一下大数据与商业银行战略规划。
对金融机构来讲,大数据的运用也是一个亟待挖掘的“富矿”。今天开始,老张用一个系列来聊一下大数据与商业银行管理的关系。第一篇我们先来谈一下大数据与商业银行战略规划。
银行战略规划需要海量数据
从逻辑上讲,银行管理中没有哪个板块比战略规划更需要大数据。世界经济形势、各国货币和财政政策、政治地缘关系、大宗商品价格、国际贸易状况、局部战争等国际问题,都可能影响中国进出口贸易,影响国内企业经营状况、影响某个产业的发展趋势,商业银行在制定战略规划涉及到是否走出国门、选择战略业务方向时,就不能不考虑国际政治、经济问题,而且银行规模越大,其意义也越大。
同样的问题反映在国内,则需要关注中国经济周期、经济形势、国家发展战略、产业政策、货币政策、财政政策、区域政策、地区间经济差异、各行各业发展现状及趋势等。一个商业银行如果制定三年、五年甚至更长时期的发展战略,这些问题显然不能不考虑。
银行内部数据可以反映出商业银行自身的特质,包括客户类型、客户数量、产品特性、区域业务数据、行业分布、利润水平、成本特征等,把握好商业银行内部数据特征,是商业银行战略规划的起点和基地,是一个商业银行核心竞争力的表现,同时也是银行在客户开发、产品开发、区域开发等战略规划的起点,内部数据的分析一定要做好。
银行内部数据可以反映出商业银行自身的特质,包括客户类型、客户数量、产品特性、区域业务数据、行业分布、利润水平、成本特征等,把握好商业银行内部数据特征,是商业银行战略规划的起点和基地,是一个商业银行核心竞争力的表现,同时也是银行在客户开发、产品开发、区域开发等战略规划的起点,内部数据的分析一定要做好。
现状:行内数据相对完善 行外数据基本未入库
理想很丰满,现实总是很骨感。制定商业银行战略时,国外、国内、行内的数据显然越多越好,而现实情况是,商业银行很少将行外数据纳入其信息规划主流数据仓库,行外数据经常以原始数据来源格式存储在战略规划制定部门的数据文件夹中,有时还要根据需要到付费数据服务商处查询。
产生这种情况的原因有很多:
首先,数据范围广。对战略制定来说,数据是“韩信点兵、多多益善”,恰恰是这个多多益善,导致商业银行很难自己构建数据库来满足战略规划制定;
其次,数据不规范。需要的数据越多,数据的规范性越差,导致图片、视频、音频、文字等各种数据格式都有,将各种格式的数据归类、整理、清洗并建模,获得有价值的决策支持信息,难度非常大;
第三,单体数据价值小。对战略规划来说,每个信息都有价值,但具体到各类数据,其价值却可能不大,因此,在数据采集时,要获得信息管理部门的同意和支持,并整理入库的难度非常大;
第四,成本问题。虽然理论上讲,大数据分析是有价值的,但现实是,成本是显性的,收益是隐性的,特别是战略决策虽然基于大量的数据分析,但最终的决策却存在很大的主观性,定性的判断、领导的判断在战略方向的选择上,处于非常重要的位置。因此,成本问题也是约束大数据在战略决策中价值发挥的“拦路虎”。
综合来看,虽然大数据概念产生和广泛使用已有一定时间,但商业银行战略规划制定过程中的作用并不大。行外数据基本与数据库无缘,行内数据的完整性、有效性虽然完善了很多,但由于数据安全等制度约束,数据使用的便捷性和灵活性还存在很大不足。
未来前景:大数据外包服务商和人才外包
大数据在商业银行战略制定中的价值开发,必须考虑商业银行的特性。一方面,商业银行从大到小,规模相差几千倍甚至上万倍,不同等级的商业银行在成本投入、人才储备等方面的差距也很大;另一方面,不同类型的商业银行,对数据需求的着力点也不一样,大型商业银行更看重国际形势、国内形势、行业趋势,小银行更看重国内形势、区域特征。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11