
大数据时代 产业格局分析
大数据战略已上升为国家战略, “十三五”规划纲要中指出,把大数据作为基础性战略资源,全面实施促进大数据发展行动,加快推动数据资源共享开放和开发应用,助力产业转型升级和社会治理创新。大数据孕育和驱动下的新产品、新服务、新产业层出不穷,并日益深刻地改变着每个人的日常生活。一个基于技术进步的“大数据时代”正在来临。
在互联网基础上发展起来的社交网络、电子商务、移动通信、可穿戴设备等“云计算”技术,让“抽样数据”迅速让位“全体数据”,“全体数据”即“大数据”时代的来临。
行业结合大数据成趋势
大数据时代已经到来,物联网、智慧手机、可穿戴设备、智能硬件等技术设备让数据成几何倍数增长。大数据不仅让IT行业迎来新的黄金时代,更将颠覆各行各业的竞争格局。目前,不同行业都在宣言 “拥抱”大数据。比如,金融、银行、交通、医疗、制造业等领域,正在利用大数据进行一场新的革命。
未来5年全球大数据市场拥有广阔的发展前景,据前瞻产业研究院《2016-2021年中国大数据产业发展前景与投资战略规划分析报告》显示,到2016年全球网络连接的数量将接近189亿,人均拥有2.5个连接。到2020年全球将拥有35ZB(1ZB=万亿GB)的数据量。年复合增长率将达到58%,其市场盈利将由2012年的50亿美元增长至2017年的500亿美元。
大数据步入资本市场
大数据正在成为巨大的经济资产,是新时代的“矿产”与“石油”,并将带来全新的创业方向,商业模式和投资机会。
大数据正成为资本“热恋”的对象。从Facebook、谷歌,到百度、九次方,五湖四海的资本如过江之鲫,正在加速向“大数据”领域集结。成立于2010年的九次方大数据,2014年、2015年两次融资,就募得资金近10亿元,得到了博信资本、建银财富、当代集团、IDG资本等18家顶尖基金的追捧。
《2015年中国大数据产业白皮书》显示,我国大数据市场规模2014年达到767亿元,预计到2020年将超过8000亿元。而前瞻产业研究院的报告分析称,10年后“大数据”可撬动万亿元级GDP。
大数据产业仍处于起步阶段
美好的前景,并不能掩盖前行的曲折。稀缺是任何资源的基本属性。“大数据”发展的瓶颈,同样在于数据的“可获取性”。据悉,目前我国信息数据资源80%以上掌握在各级政府部门手里,“深藏闺中”而未能与社会共享,造成了极大的浪费。
虽然,大数据的技术发展越来越成熟,但是大数据的产业仍处于起步阶段,这需要大数据产业链各个环节的相互协作,共同发展大数据。大数据作为社会基础设施的一部分,重要性毋庸置疑,在可预见的三五年时间里一定是高速的发展。可以预见的是,大数据时代全体产业都将发生变局。谁战略得当、执行力强,谁就可能胜出,否则就可能淘汰。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10