
十项大数据工程如何"数据强国"
据了解,《纲要》是我国发布的首个大数据国家行动计划,旨在全面推进我国大数据发展和应用,加快建设数据强国。该计划提出从政府大数据、大数据产业、大数据安全保障体系三个方面着手推进大数据领域的十大工程。
其中,包括推进政府数据资源共享开放工程、国家大数据资源统筹发展工程、政府治理大数据工程、公共服务大数据工程等4大“政府大数据”工程;工业和新兴产业大数据工程、现代农业大数据工程、万众创新大数据工程、大数据关键技术及产品研发与产业化工程、大数据产业支撑能力提升工程等5大“大数据产业”工程;以及网络和大数据安全保障工程。
2020年民生保障领域的政府数据向社会开放
与十八大以来发布的诸多国务院文件一样,《纲要》明确了行动计划中的部分任务的完成时间:2017年底前跨部门数据资源共享共用格局基本形成;到2018年,开展政府和社会合作开发利用大数据试点,中央层面构建形成统一的互联网政务数据服务平台,跨部门共享校核的国家人口基础信息库、法人单位信息资源库、自然资源和空间地理基础信息库等国家基础信息资源体系基本建成,2018年底前建成国家政府数据统一开放平台等。
到2020年,形成一批具有国际竞争力的大数据处理、分析、可视化软件和硬件支撑平台等产品。培育10家国际领先的大数据核心龙头企业,500家大数据应用、服务和产品制造企业。实现关键部门的关键设备安全可靠。
2020年底前,逐步实现信用、交通、医疗、卫生、就业、社保、地理、文化、教育、科技、资源、农业、环境、安监、金融、质量、统计、气象、海洋、企业登记监管等民生保障服务相关领域的政府数据集向社会开放。
建立国家大数据发展应用统筹协调机制
《纲要》提出建立国家大数据发展和应用统筹协调机制,推动形成职责明晰、协同推进的工作格局,强化国家数据资源统筹管理。同时设立大数据专家咨询委员会,为大数据发展应用及相关工程实施提供决策咨询。
《纲要》还表示,要修订政府信息公开条例,制定政府信息资源管理办法,建立政府部门数据资源统筹管理和共享复用制度;同时研究推动网上个人信息保护立法工作,推动出台相关法律法规,加强对基础信息网络和关键行业领域重要信息系统的安全保护。
另外,《纲要》明确要加快建立大数据市场交易标准体系,同时强化中央财政资金引导,集中力量支持大数据核心关键技术攻关、产业链构建、重大应用示范和公共服务平台建设等。
延伸
十项大数据工程如何“数据强国”?
1.政府数据资源共享开放工程
推动政府数据资源共享。制定政府数据资源共享管理办法。
形成政府数据统一共享交换平台。到2018年,中央政府层面实现金税、金关、金财、金审、金盾、金宏、金保、金土、金农、金水、金质等信息系统通过统一平台进行数据共享和交换。
形成国家政府数据统一开放平台。建立政府部门和事业单位等公共机构数据资源清单,制定实施政府数据开放共享标准,制定数据开放计划。
2.国家大数据资源统筹发展工程
整合各类政府信息平台和信息系统。在地市级以上(含地市级)政府集中构建统一的互联网政务数据服务平台和信息惠民服务平台。
整合分散的数据中心资源。构建形成布局合理、规模适度、保障有力、绿色集约的政务数据中心体系。开展区域试点。
加快完善国家基础信息资源体系。到2018年,跨部门共享校核的国家人口基础信息库、法人单位信息资源库、自然资源和空间地理基础信息库等国家基础信息资源体系基本建成。
加强互联网信息采集利用。制定完善互联网信息保存相关法律法规,构建互联网信息保存和信息服务体系。
3.政府治理大数据工程
推动宏观调控决策支持、风险预警和执行监督大数据应用。探索建立国家宏观调控决策支持、风险预警和执行监督大数据应用体系。
推动信用信息共享机制和信用信息系统建设。鼓励互联网企业运用大数据技术建立市场化的第三方信用信息共享平台,建设企业信用信息公示系统,初步建成社会信用体系。
建设社会治理大数据应用体系。实时采集并汇总分析政府部门和企事业单位的市场监管、检验检测、违法失信、企业生产经营、销售物流、投诉举报、消费维权等数据。
4.公共服务大数据工程
医疗健康服务大数据。建设覆盖公共卫生、医疗服务、医疗保障、药品供应、计划生育和综合管理业务的医疗健康管理和服务大数据应用体系。
社会保障服务大数据。建设由城市延伸到农村的统一社会救助、社会福利、社会保障大数据平台。
教育文化大数据。建立各阶段适龄入学人口基础数据库、学生基础数据库和终身电子学籍档案。
交通旅游服务大数据。建立综合交通服务大数据平台。建立旅游投诉及评价全媒体交互中心。
5.工业和新兴产业大数据工程
工业大数据应用。研究推动大数据在研发设计、生产制造、经营管理、市场营销、售后服务等产业链各环节的应用。
服务业大数据应用。研发面向服务业的大数据解决方案。
培育数据应用新业态。大力培育互联网金融、数据服务、数据处理分析、数据影视、数据探矿、数据化学、数据材料、数据制药等新业态。
电子商务大数据应用。电子商务企业应依法向政府部门报送数据。
6.现代农业大数据工程
农业农村信息综合服务。建设农产品全球生产、消费、库存、进出口、价格、成本等数据调查分析系统工程,构建面向农业农村的综合信息服务平台。
农业资源要素数据共享。建立我国农业耕地、草原、林地、水利设施、水资源、农业设施设备、新型经营主体、农业劳动力、金融资本等资源要素数据监测体系。
农产品质量安全信息服务。建立农产品生产的生态环境、生产资料、生产过程、市场流通、加工储藏、检验检测等数据共享机制。
7.万众创新大数据工程
大数据创新应用。鼓励企业和公众发掘利用开放数据资源。
大数据创新服务。研发一批大数据公共服务产品。
发展科学大数据。构建科学大数据国家重大基础设施。发展科学大数据应用服务中心。
知识服务大数据应用。建立国家知识服务平台与知识资源服务中心。
8.大数据关键技术及产品研发与产业化工程
加强大数据基础研究。探讨建立数据科学的学科体系;研究面向大数据计算的新体系和大数据分析理论,探索建立数据科学驱动行业应用的模型。
大数据技术产品研发。加强数据存储、整理、分析处理、可视化、信息安全与隐私保护等领域技术产品的研发。
提升大数据技术服务能力。以应用带动大数据技术和产品研发,形成面向各行业的成熟的大数据解决方案。
9.大数据产业支撑能力提升工程
培育骨干企业。到2020年,培育10家国际领先的大数据核心龙头企业,500家大数据应用、服务和产品制造企业。
大数据产业公共服务。形成面向大数据相关领域的公共服务平台。
中小微企业公共服务大数据。形成全国统一的中小微企业公共服务大数据平台。
10.网络和大数据安全保障工程
网络和大数据安全支撑体系建设。到2020年,实现关键部门的关键设备安全可靠。完善网络安全保密防护体系。
大数据安全保障体系建设。建设完善金融、能源、交通、电信、统计、广电、公共安全、公共事业等重要数据资源和信息系统的安全保密防护体系。
网络安全信息共享和重大风险识别大数据支撑体系建设。建立网络安全信息共享机制,推动政府、行业、企业间的网络风险信息共享。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08