京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据可视化正面临哪些挑战
拓展性和动态分析是可视化的两个最主要的挑战。举例来说,对大型动态数据,原本A问题的答案和B问题的答案也许在同时应对AB两个问题时就不适用了。基于可视化的方法迎接了四个挑战,并将它们转化成以下的机遇。
多源:开发过程中需要尽可能多的数据源。
体量:使用数据量很大的数据集开发,并从大数据中获得意义。
质量:不仅为用户创建有吸引力的信息图和热点图,还能通过大数据获取意见,创造商业价值。
高速:企业不用再分批处理数据,而是可以实时处理全部数据。
大数据可视化的多样性和异构性(结构化、半结构化和非结构化)是一个大问题。高速是大数据分析的要素。在大数据中,设计一个新的可视化工具并具有高效的索引并非易事。云计算和先进的图形用户界面更有助于发展大数据的扩展性。
可视化系统必须与非结构化的数据形式(如图表、表格、文本、树状图还有其他的元数据等)相抗衡,而大数据通常是以非结构化形式出现的。由于宽带限制和能源需求,可视化应该更贴近数据,并有效地提取有意义的信息。可视化软件应以原位的方式运行。由于大数据的容量问题,大规模并行化成为可视化过程的一个挑战。而并行可视化算法的难点则是如何将一个问题分解为多个可同时运行的独立的任务。
高效的数据可视化是大数据时代发展进程中关键的一部分。高维可视化越有效,识别出潜在的模式、相关性或离群值的概率越高。
大数据可视化还有以下几点问题:
视觉噪声:在数据集中,大多数对象之间具有很强的相关性。用户无法把他们分离作为独立的对象来显示。
信息丢失:减少可视数据集的方法是可行的,但是这会导致信息的丢失。
高速图像变换:用户虽然能观察数据,却不能对数据强度变化做出反应。
大型图像感知:数据可视化不仅受限于设备的长宽比和分辨率,也受限于现实世界的感受。
高性能要求:在静态可视化几乎没有这个要求,因为可视化速度较低,性能的要求也不高。
可感知的交互的扩展性也是大数据可视化面临的挑战。可视化每个数据点都可能导致过度绘制而降低用户的辨识能力,通过抽样或过滤数据可以删去离群值。查询大规模数据库的数据可能导致高延迟,降低交互速率。
在大数据的应用程序中,大规模数据和高维度数据会使进行数据可视化变得困难。当前大多数大数据可视化工具在扩展性、功能和响应时间上表现非常糟糕。可视化分析过程中,不确定性是有效的考虑不确定性的可视化过程巨大挑战。
可视化和大数据面临许多的挑战,下面是一些可能的解决方法:
1. 满足高速需要:一是改善硬件,可以尝试增加内存和提高并行处理的能力。二是许多机器会用到的,将数据存储好并使用网格计算方法。
2. 了解数据:请合适的专业领域人士解读数据。
3. 访问数据质量:通过数据治理或信息管理确保干净的数据十分必要。
4. 显示有意义的结果:将数据聚集起来到一个更高层的视图,在这里小型数据组和数据可以被有效地可视化。
5. 处理离群值:将数据中的离群值剔除或为离群值创建一个单独的图表。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05