
运用大数据服务供给侧改革
我国“十三五”的中心任务是提高经济增长的质量和效益,而推动供给侧改革构建高精尖经济结构也是为了更好地服务这个中心任务。可以说,宏观经济的质量和效益源于中观产业,中观产业又源于微观的市场主体即企业。所以,作为市场主体的企业质量好坏直接会给经济带来影响。
那么,在北京构建高精尖经济结构的大背景下,我们如何来判断哪些是高精尖的企业?哪些企业经济贡献非常大?哪些对外投资辐射特别强、专利技术多、人均纳税高,而且获得过国际资本和国内优质资源投资,单位能耗特别小呢?对此,北京市政协委员、龙信数据首席数据科学家屈庆超给出了答案。
屈庆超指出,当下运用大数据对企业信息进行监测不仅能为政府提供宏观经济数据,同时在中观上也能反映一个产业的发展动态,在微观上也能反映企业的相关信息,有助于精准助力供给侧改革,构建高精尖经济结构。
当下,政策的红利激发了市场的活力,从2014年到2015年,我国新增市场主体超过400万,相当于每分钟新增8家企业。这样庞大的微观群体集中的数据将能反应海量的信息。但由于政府部门各管一段,数据不透明,这就对他们识别哪些是高精尖企业,哪些是技术尖端企业等带来壁垒。
屈庆超对记者表示,“一个企业的发展其实是多维的,我们通过建立模型,测算出北京有将近3万家高精尖企业,这些企业无论在经济总量、研发投入、专利授权量和纳税方面都占到了北京市总量的50%以上。后来我们又详细地进行了划分,发现海淀区和朝阳区就占了50%以上的高精尖企业,其中海淀区占比最高。由此,能够得出结论,未来在高精尖产业构建中,海淀区会有很大的经济增长潜力。这就是大数据的作用。”
大数据的价值就在于它的应用。屈庆超又举例说,北京有1.6万家企业获得了风险投资,只占北京企业总数的1%,但他们的品牌商标数量却占了北京企业品牌商标总数的8%;这1%的企业同时占了北京总体企业专利数总量的11%;产品著作权占了北京市企业总量的12%。我们现在为什么需要大数据?原因就在于过去的统计方法在社会的变革中很难适应当前的需要了,我们的政府在做决策的时候需要更加精准、更加科学的数据,需要大数据和大数据思维,来实现治理能力的现代化,以便精准助力供给侧改革。
可以说,下一轮的信息革命将是内容的互联、数据的互联。相应地,政府职能的转变和未来对宏观经济的调控与管理的手段都将会继续优化和改进。屈庆超认为,未来的数据将不仅仅是政府部门的数据,还需和社会、互联网、大数据企业共建数据,使所研究的区域更有系统性。
因此,屈庆超建议,政府部门应协同大数据企业一起,把数据共建、共享起来,建立北京市的企业大数据融合中心,服务首都经济的精准治理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12