
2016年大数据专家值得期待的8件事
随着经济的复苏,全行业又掀起了雇佣潮,企业更偏向技能娴熟的应聘者。当然,这在聘用大数据专家时也一样奏效。数据质量总监、软件工程师、平台软件工程师、数据库工程师、大数据平台工程师,安全分析师,分析师和信息系统开发管理工作这些职位都需要精通大数据。很明显,大数据在接下来的发展的中将变成“更大的”数据。
在此列举八件2016年大数据专家值得期待的事:
1. 收入增长
如果你有大数据的专业技能,说不定你可以拿到124000美元年薪,其中不包括奖金及其它补贴哦。
2. 美国西海岸和东海岸的从业者有最好的就业市场
如果你住在新泽西州北部,或者纽约长岛,那么恭喜你!你处在“抢夺“东海岸工作的最好地理位置。而在加利福尼亚州,大数据工作是最吃香的。尤其在大湾区的弗里蒙特、桑尼维尔、奥克兰、三藩、圣克拉 拉和圣若泽。
3. 销售代表一职的需求量
“暴涨”这个词常拿来形容大数据解决方案的销量。但是像数据解决方案这样的产品,销售代表必须要由有丰富销售经验并深谙专业知识。所以销售代表一职的需求量在2015年暴涨后,在2016年还将持续。
4. 分析师一职的需求量
如果没有分析师,那么世界上积累的所有的大数据都没了价值。2015年安全分析师和管理分析师的需求率呈两位数增长。企业通过大数据利用消费者购买记录、手机app使用、客户关系管理记录和社交数据,来预测消费趋势和行为。这有利于市场改善他们的目标。
5. 预计大数据招聘中要招聘名人
很多公司已经发布了职位,包括IBM、思科、戴尔、Adobe系统公司(EMC),medeanalytics公司,埃森哲,CA Technologies Inc.,Splunk和亚马逊等。
6. 有额外技能的应聘者脱颖而出
大数据的工作需要其他技能,包括Python编程,统计,SQL,C,Java,Scala,Apache Hadoop,Linux,ApacheHadoop、机器学习、数据挖掘、统计和定量分析、NoSQL、开源技术、VMware(2015需求增加了近800%),超融合基础设施、结构化查询语言和数据仓库的知识。有工作技能的雇员在2016年的就业市场上更有价值,尤其是那些又精通专业知识又有创意的人。
7. 更多行业将用到大数据
多个行业将需要大数据专家,比如:制造业、金融保险业、零售业、信息技术,以及其他科学及技术服务业。专家们认为,像制造业这样的垂直市场的投资回报率是最高的。
8. 大数据是量化的主观事物
2016年会有越来越多的有关大数据的职位,因为大数据分析本身每年都在不断的更新。它不只是用来处理数据,或者解释人们暗号交流这样的非语言交际线索(比如声音、手势和表情)。大数据能够量化的信息越多,那么公布的执行和分析这些枚举的职位将越多。
对大数据的专业人士而言,经过了2015年接下来会变得更好。这罕见的一名员工,重要的技能,伴随着销售能力和编程知识可以抢了一份高薪的工作对于一个公司的高层很容易在2016。如果一名雇员有丰富的销售经验和深厚的专业知识,那么在2016年他将很容易在一家大公司获得高薪!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12