
大数据亦需要数据虚拟化
为了实现大数据所勾画出的美好愿景,你需要在数据层和基础设施层等基础架构中对数据进行抽象化的工作。在云上的大数据拥有跨越大量节点、集群和层的众多潜在 功能服务层,而这些节点、集群和层很容易变得不堪重负。为了应对这些问题。首先,你应该规划一个全面的云数据虚拟化基础设施。虚拟化云分析法是新时代中的 大数据典范。作为一种集成方法,它能够确保大数据的统一访问、建模、部署、优化和管理成为一种异构资源。
在 云上的大数据拥有跨越大量节点、集群和层的众多潜在功能服务层,而这些节点、集群和层很容易变得不堪重负。为了应对这些问题。首先,你应该规划一个全面的 云数据虚拟化基础设施。虚拟化云分析法是新时代中的大数据典范。作为一种集成方法,它能够确保大数据的统一访问、建模、部署、优化和管理成为一种异构资 源。
与任何虚拟化一样,数据虚拟化是一种允许用户访问、管理和优化异构基础架构的方法,就好像它们是一种单一、且在逻辑上是统一的资源一样。这使得用户能够从一些服务、功能或其他资源的内部部署中对外部界面进行抽象化。
与 支持逻辑上统一的访问、查询、报告、预测分析,以及针对关系型、Hadoop、NoSQL等不同后端数据库应用的任何“SQL-虚拟化”解决方法相同,数 据虚拟化的核心是抽象层。当然,数据虚拟化可能会转而依靠其他的基础设施虚拟化层,例如存储与服务器平台。在某些情况下,数据虚拟化可能会在地理上和多云 环境中进行扩张。
在我们讨论的众多层中,虚拟化无疑是这些枯燥数据话题的一个缩影。但是如果你希望自己的大数据云平台能够解决以下业务需求,那么它们无疑是最基础的。这些具体的业务需求是:
·基于弹性、灵活拓扑结构的先进分析型资源
·汲取源自任何来源、格式和方案的纯消费性资源
·能够留存、聚合、处理任何动静结合信息的“延迟-灵敏”资源
·在价值链中扩展,在私有云[注]和公有云[注]中扩张的联合资源
·能够让你通过现有工具和应用,调整、扩展和升级后端数据平台的无缝互操作资源
是的,这是一项艰巨的任务。毫无疑问,数据虚拟化和虚拟的基础架构实践起来比说起来困难的多。此外,部署、管理和优化的工作也需要花费大量的资金。
基 于云的大数据需要越来越复杂的虚拟化基础设施。对于大部分大数据专业人员而言,解决这一难题就如同天文学家试图绘制出宇宙中的暗物质一样困难。他们知道这 项工作既重要,但又十分的乏味和烦琐。实际上,大数据专业人员更喜欢从事Hadoop和NoSQL的研究,因为它们正在新的技术领域中闪烁着最耀眼的光 芒。
随着大数 据应用范围的不断拓展,用户未来几乎必定要沿着虚拟化这条路前行。混合大数据云难以处理的异质性将推动用户选择这一方向。在私有云中,大数据平台融合需要 一个虚拟化架构,以将新的方案与之前的投资相关联起来。然而,融合将会阻止用户持续的平台现代化与迁移尝试,妨碍用户将创新和适合的平台整合到云中,阻碍 厂商的“产品-改良”循环。除非将所有的大数据方案都放到“通用的”公有云服务上,否则用户在多种组合方案中需要虚拟化公有云、私有云和混合云[注]架构 的访问。
当 然,能沿着“数据-虚拟化”路线走多远,将取决于用户业务需求和大数据环境的复杂性。此外,还取决于用户对风险、复杂性和困难的承受程度。在未来,随着分 析模型、规则和大数据云上汇聚的信息日益复杂,平台将成为虚拟化访问、执行和管理的核心。在这一新领域内,MapReduce将成为关键的(但并不是唯一 的)开发框架。此外,MapReduce还将成为针对内联分析和交易计算的虚拟化架构的一部分。不过,目前这一虚拟化架构虽然涵盖范围更广,但是大部分仍 没有被明确定义。
迄今为止,还没有人能够对这些将云与大数据世界拼接在一起的层、界面和抽象化展开进一步概述,而这也是一项摆在我们面前的艰巨任务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12