
两个项目对比的excel组合分析图表
在实际工作中,也会碰到这样的情况:对今年和去年的各项财务指标进行对比分析;把公司的员工人数按性别和年龄段进行分类对比显示。图1所示就是这样的一个图表,图表左侧是公司男员工各个年龄段的人数,图表右侧是公司女员工各个年龄段的人数,这样的图表可使我们一目了然地了解到公司员工的构成情况,其实这也属于一个excel图表中的两个项目对比的excel组合分析图表。
图1
这是一个比较复杂的excel组合图表,因为要将男员工绘制在左侧,将女员工绘制在右侧,中间是年龄段标签。这样的条形图不是仅仅根据原始数据就能绘制出来的,要用到很多技能和技巧。下面介绍这个图表的主要制作方法和步骤。
1、设计辅助绘图数据区域,如图2中的数据区域E1:H8所示,其中E列的数据是为了分割左右的条形图,并在图表中显示各个年龄段名称,G列的数字是手工输入的数字,用于调整图表的左右两列条形中间的宽度,以便能够清楚地显示各个年龄段名称。
图2
2、将F列的男员工人数修改为负数(因为在绘制条形图时,只有负数才能绘制在左边),可以采用“选择性粘贴”中的“批量修改”功能把F列的数据统一修改为负数。
3、选择F列的数据区域,打开“设置单元格格式”对话框,在“分类”列表中选择“自定义”选项,在“类型”文本框中输入自定义数字格式代码“0:0:0;@”,如图3所示,这样就把负数又显示为正数。
图3
4、选择单元格区域El:H8,绘制“堆积条形图”,如图4所示。
图4
5、下面设置分类轴格式。
选择分类轴(也就是纵轴),打开“设置坐标轴格式”对话框。
在“坐标轴选项”分类中,选择“逆序类别”复选框,并将“主要刻度线类型”、“次要刻度线类型”和“坐标轴标签”都设置为“无”,如图5左所示。在“线条颜色”分类中,选择“无线条”单选按钮,如图5右所示。
图5
上述设置的目的是不在图表上显示分类轴,并把分类轴的类别次序反转,以使其上下顺序与工作表的上下顺序相同。
6、分别选中数值轴和网格线,按【Delete】键将其删除。
7、调整图表区和绘图区大小,并将图例移动到图表顶部,取消图例的边框的填充颜色。这样,图表就变为如图6所示的情形。
图6
8、选择数据系列“年龄段”,打开“设置数据系列格式”对话框。在“系列选项”分类中,将分类间距调整为一个合适的值,如图7左所示。在“填充”类别中,选择“无填充”单选按钮,也就是不显示该数据系列,如图7右所示。
图7
9、注意到此时系列“年龄段”还处于选中状态,为该系列设置显示数据标签,但是仅仅显示系列的“类别名称”,如图8所示。
图8
10、为图表添加图表标题,并将默认的标题文字修改为具体的标题说明文字。
11、分别选择数据系列“男”和“女”,设置它们的填充效果,并显示数据标签,但仅仅显示系列的“值”。
12、设置图表区的格式和绘图区的格式,调整图表的大小和位置,再对图表中某些不满意的地方重新设置格式,即可得到需要的图表。
两个项目对比的excel组合分析图表可以使用于今年和明年的业绩对比,男性和女性等等的相互对比分析,特别是两年的业绩对比用处最多了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12