京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据重塑未来国际战略格局
大数据是新的石油,是本世纪最为珍贵的财产。大数据正在改变各国综合国力,重塑未来国际战略格局。2013年7月,国家主席习近平视察中国科学院时指出:“大数据是工业社会的‘自由’资源,谁掌握了数据,谁就掌握了主动权。”
大数据“安全的小船不能说翻就翻”
数据显示,2015年全球数据泄密的事故达1673起,涉及7亿多条数据记录。《Verizon 2015数据泄露调查报告》也显示,500强企业中,超过半数曾发生过数据泄露事件。更令人惊悚的是,60%的案例里,攻击者仅需要几分钟就可以得手。没有大数据安全,就好比一个国家没有安防一样,数据得不到保护,随时有可能受到破坏、攻击和篡改,极大地阻碍大数据产业的健康发展。可见,实现大数据产业可持续发展的前提是数据安全。
我们平时关心更多的数据“锁”或者“仓库管理员”是否可靠,其实更深层次的数据安全是数据库的安全。我国大数据库几十年一直用国际技术,说白了就是别人建了仓库,我们把数据装到别人的仓库里,按别人的规则、规范使用管理自己的数据,还用别人的仓库管理员(CPU)管理数据,什么都是别人的,除了数据来源是自己的。那么,我们要怎么用这些数据?用了干什么?用了能有什么结果?最终都是国际技术说了算。久而久之,我们国人已经自觉不自觉有个观念:国际技术保障数据安全,但这种安全真的安全吗?有一天国际技术不保障这种安全了,国际技术游戏规则变化了,国际技术被核心技术国完全掌控了,我们怎么办?
在大数据时代,甚至人们连吃什么、用什么都依赖数据分析时,我们依然不把最核心的数据安全放入改革制高点去讨论,这是危险的。所以无论什么性质的改革,核心还是硬技术实力的提升,只有核心基础技术实力提升了,用改革的办法推进核心技术结构调整,减少无效和低端供给,扩大有效和中高端有核心技术支撑的供给,增强供给结构对需求变化的适应性、灵活性、安全性,提高全要素生产率,才能使供给体系更好适应需求结构变化。
在大数据时代,大数据改变人类生活的说法一点儿也不夸张,但如果没有适时建立起大数据安全保障体系,大数据意味着存在安全隐患。对任何企业、机构、机关乃至于社会来讲,大数据分析都是最敏感的资产。大数据分析工作提供了精准、关键的竞争优势;另一方面,如果上述分析被别人掌握或落入别有用心之人手中,则会陷入巨大的风险中,这对企业来讲是如此,对机构来讲是如此,对国家更是如此。
数据库技术建设是国家战略安全无法回避的问题
现在国家间实力竞争,经济实力的竞争占据主要战场,整个社会商业数据分析就是这个主要战场的核心要素,而管理运用这些要素的大数据核心技术就是这些要素的保护者,卫士也就是数据仓库。我们应该在这些核心要素上痛下功夫,无论前端多少展现平台,这不重要,至少我们可以做到把自己的数据装在自己的仓库里,并自己制定规则,虽然数据库建设是所有大数据里最难啃的技术部分,但是也是最核心部分,对技术要求最高。
如果如何使用数据和管理数据,都是我们自己说了算,最好还把这个说了算的标准拿到国际上去,让国际上也使用我们的标准,这样我们就不但拥有了自己的技术,而且拥有了被国际社会认可的,被国际社会遵从的核心技术标准,那么这种核心竞争力应该是供给侧里“补短板”最有力的体现。我们国家在国际标准委大数据分会数据库标准提案的通过,意义也就不仅仅是在国际标准化组织里制定标准这么简单。
我们国家一直以来大数据就是依赖国际技术,因为技术是人家的、产品是人家造的,标准自然就是人家制定了,定了产品标准接下来就是定游戏规则,道理很明白,就是咱们技术上突破不了,就永远用别人的游戏规则玩游戏。所以这场革命势在必行,国家正在这个方面加大力度。大力支持供给侧改革中的“补短板”,其实也是由原来“中国制造”升级到“中国智造”的技术革命过程。在原来由国际上美、德一统天下的大数据核心技术领域,标上“中国智造”这一标志也应该是具有供给侧革命性意义的。
大数据正在成为经济社会发展新的驱动力,将涵盖经济社会发展各个领域,成为新的重要驱动力。大数据重新定义了各大国博弈的空间。在大数据时代,世界各国对数据的依赖快速上升,国家竞争焦点已经从资本、土地、人口、资源的争夺转向了对大数据的争夺。未来国家层面的竞争力将部分体现为一国拥有数据的规模、活性以及解释、运用的能力,数字主权将成为继边防、海防、空防之后另一个大国博弈的空间。
中国需要加快形成大数据国家战略,着力规划“大数据战略”中长期路线图与实施重点、目标、路径,统筹布局,加快大数据发展核心技术研发,推进大数据开放、共享以及安全方面的相关立法与标准制定,抢占新全球科技革命和产业革命战略机遇期,重构国家综合竞争优势已经迫在眉睫。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29