
女人与大数据:大数据时代就是女性的时代
大数据时代,就是女性的时代,女性在基因里就会计算大数据。
很多男性和孩子,其实一直奇怪女性这种特殊的能力。比如小时候你刚进家门,妈妈就以狐疑的语气马上说:“刘志军,你今天是不是没考好?”。比如你刚看一眼手机,老婆就笑:“是不是又是隔壁二狗约你打游戏?”。再比如你刚刚关起门打电话,女朋友一会儿就哭了:“你是不是又背我出去找小三?”。
她们有的时候猜对了,有的时候猜错了。但是总体,正确率高于随机水平。她们错的时候,男人就撇撇嘴,你们女人就爱胡思乱想;她们对的时候,男人就说,女人就是一种敏感的动物,可能感觉器官就敏锐一些。
不管怎么说,这些瞎猜,总体正确率高于随机水平这点,也让男人非常害怕。为了适应这点,男性也形成了相当强的反侦察技能。
有一些研究指出,女性大脑的白质(用于连接各种区域的解剖组织)高于男性。所以把事物连接在一起想象的能力强。也有最近研究表明,女性对“日期”记忆能力强于男性,所以能记住所有生日,纪念日,甚至不重要朋友的一些重大日子。
不管这些结果的真实性,我觉得,这都不是女性最卓越的能力。女人最卓越的能力是长期追踪一些看似不重要的数据,形成自己的“基准线”和“模式”。一旦这些数据点的模式,显著不同于她所熟悉的基准线,她就知道反常。女人在日常生活中不考虑什么因果关系和相关性的区别,俺们信奉的原理就是:“事出反常必有妖”。
讲大数据的人经常讲林彪的例子。林彪打完一场战役,就认真记录一些非常细节不重要的数据,比如缴获枪支,长枪和短枪的比例,战俘的年龄层次,缴获的粮食是高粱还是小米等等,都事无巨细记在本子上面。别人都笑他。但是后来,他就用这些数据来判断哪个地方是敌军指挥部。
女人的干的事情,基本雷同。一个女孩A暗恋男孩B,但通常不直接联系,过了两天我问她要不要叫他一起吃饭,她说,他正在打球。我说你怎么知道?
她说,男孩B平时是早上8点在Gmail邮箱上线,8点半呈现Away状态,这是他出去买咖啡早饭了。9点再次上线后Busy,这是在工作,12点半再次Away就是午餐,晚上一直在线,可能是读文章或打游戏。其哥们C,早上十点上线,全天在线,然后夜里2点还在线上,这是一个晚睡晚起的男生。其另一个哥们D,全天Busy,但是大多数时间都在。但是重要的模式是,每星期有2-3天,他们一起离线或者Away 3-4个小时。结论:他们在一起打球。
我听了以后跪服。我说,你真太棒了,这就是大数据。有人说,真是闲的无聊,难道不能直接问?生活里的小事,随便问问当然无所谓,但是在社交场合不合适问的事情,用大数据能得到答案,难道不是一种卓越能力吗?
最近出了几篇论文,通过数据挖掘人在社交网络上点赞的规律,来预测人的智商,兴趣,等等。其实这种事情,女性经常干。哪个女生敢说,自己没在party之前把所有宾客都Google了个底朝天?在刚开始谈恋爱的时候,把对方的博客,微薄,Facebook,亲朋好友的博客,微薄,Facebook翻了个底掉?
反正我干过:)。信息时代嘛,我干这种事情毫无羞耻心并且认为丝毫不是浪费时间。交朋友,谈恋爱,是比买车买房更重要的事情,产生更深远的影响,所以做背景调查相当重要,对于陌生人尤其重要。
话扯远了,最后扯回到,妈妈当初是怎么看出你考试没考好的,老婆是怎么看出你要出去打游戏,女友怎么怀疑你找了小三的。她们每天都用眼睛观察你眼睛的注视,看了什么,盯了几秒,你洗脸刷牙需要多长时间,多长时间刮一次胡子,你把拖鞋放在哪里,在饭桌上说多少话。
如果你哪天,盯着手机的时间比以往长,牙膏突然挤到水池边,没到重大节日突然刮胡子,拖鞋突然放得很整齐,在饭桌上一句话没有,饭后很快很轻很轻地进了另一间屋子,又很轻很轻把门关上。
这些模式集合在一起,就是“事出反常必有妖”。小时候当你有鬼心思,你妈妈总是第一次猜到,她总是得意的说:“你是我生的,你怎么想我还不知道?”。实际真正的trick并不是她生了你。
是因为她爱着你,她一直细致入微地观察着你,精神上记录着你的各种生物信号,才能达到如此神乎其神的程度。
没有任何传感器和算法能达到母亲的程度,但希望未来能有传感器和算法近似于母亲的贴心,达到数据时代为人带来的真正便利。
我脑子真的不行了,马上要去睡觉。说两句总结,
第一,女性要相信自己入微的观察和大数据能力,并且把这种能力用在更高水平的地方,一定能在这个时代有更强大竞争力。
第二,妈妈,我爱你。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13