京公网安备 11010802034615号
经营许可证编号:京B2-20210330
excel图表的修饰与美化
excel图表的修饰与美化,是绘制具有说服力图表的一个必做的基础性工作,也是非常重要的工作。图表美化得好坏,直接影响到图表的信息表达,也影响数据分析的效率。
美化图表应以不影响数据为前提,不要在图表上添加不必要的元素(也就是与图表主体不相关的元素或者重复的内容)。图表的美化以简单为美,但并不是说不需要对图表做任何的修饰。合理布局图表各个元素的位置以及合理的色彩搭配,可以更加突出图表的要点和主题,使图表使用者不再为看不懂图表而发愁。
美化修饰图表的宗旨——简单是美;切忌一点——过度修饰图表。下面了解几个excel图表美化效果的对比实例。
excel图表1
图1所示是在绘图区插入了一幅图片,并将图表标题边框设置为白色。这个图表的一大缺点是信息表达不直观,过度的修饰影响了数据分析的重点。若要考察各年实际销售额的变化,但要重点关心2009年的数据,那么图6—58所示的美化效果。就非常清楚地表达了这种意思。因此,图2所示的图表要比图1所示的图表更具有说服力。
图1
图2
excel图表2
图3所示是采用立体条形图表示数据,并且在条形的右端显示份额数据。这个图表的缺点是图表不够简练,要想了解各个地区的份额,就必须左右摇头查看地区名称和份额数据。
图3
图4所示是采用平面条形图的图表,并且把地区名称和份额数据都放在分类轴左侧,干净的白色背景更加突出了图表所要表达的信息。
图4
excel图表3
图5所示是采用立体饼图来表示数据,但把数据与地区名称分开显示,因为如果在立体饼图上同时显示地区名称和份额数据,会使图表显得更乱。
图5
图6所示则采用了平面饼图,在饼图上同时显示地区名称和份额数据,同时消除各个扇形的边框线,这样的图表表示的信息更加清楚和直观。
图6
excel图表4
图7所示是一个极其普通的折线图,人人都会绘制这样的图表,但是它表达的信息是不清楚的:是要考察趋势,还是考察异常的月份?网格线的存在也使得图表很难看。
图7
若要重点考察异常月份数据,如最大值和最小值,就可以制作如图8所示的图表,重点标识出最低销售额和最高销售额的月份,并取消显示网格线和坐标轴,这样不仅图表界面整洁,可以一目了然地发现问题,同时也可以非常直观地观察各月的销售变化趋势。
图8
若不仅要考察异常月份数据,如最大值和量小值,还要更加感性地考察数据的变化趋势,就可以制作如图9所示的图表,重点标识出最低销售额和最高销售额的月份,为系列添加一个合适的趋势线。
图9
不管是我们对excel图表的修饰与美化怎么操作,我们都要记住专业的excel图表并不是越美化越专业的,专业的excel图表需要配合图表的内容和数据以及公司的性质来专业的制作excel图表。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27