京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析当前对P2P信贷有什么用
当P2P发现了大数据之后,通过大数据对借款人进行特征分析,从而实现线上风控控制流程,这一直是无数人追求的梦想。但对于现在来说无论是人民银行征信系统或是大数据分析都过于浮夸,以下内容笔者愿就所认为之难处与大家讨论。
虽然现在人民银行征信系统数据还没有对接,但并不妨碍很多P2P平台拿这个做宣传,拿这个作为P2P行业跨向新纪元的钥匙。下面我们来简单的分析一下征信系统对于P2P行业是否真的有天翻地覆的神奇功效。
中国的征信系统截至去年年底收录自然人8.3亿,收录企业及其他组织将近2000万户,包含了以基本信息及银行信贷为核心的数据,还包括社保、公积金、环保、欠税、民事裁决与执行等信息,看似数据量相当充实,但是仅凭借这些信息就能确定这个人到底是否可以借款以及借款多少了吗?目前光P2P平台就还包括了手机清单、收入证明、家属身份信息、驾照、房产等34项信息,征信系统本身也只能满足现在P2P需求的一部分而已。甚至连征信中心的一位负责人都公开表示:你不能通过征信信息就给别人放款,关键还是需要自己做好风控。
当然,现在有很多人也在说大数据,我认为理想状态是可以达到的,大规模获取海量数据,然后加以分析,再结合央行征信,可以精准的判断出一个借款主体的资金用途和还款能力,想想真是,做梦也会笑啊。但是梦想就像泡沫,一戳就破。在这个过程中有两个问题要亟待解决。
第一:如何获取数据?理想中的P2P大数据征信是多维度非相关数据,我们需要用户社会学基本数据信息、现金流信息、行为偏好、信息偏好、人际网、迁徒特征、消费场所信息。打一个比方,在线下做风控的时候我们经常会问借款人的邻居对借款人的印象如何,无论邻居说“他是一个勤劳朴实人”亦或是“他天天出去打牌”这些信息对信贷审核都有至关重要的影响,但是到了线上我们通过什么途径才能获取到我们想要的数据呢?
第二:我们如何分析这些数据?目前,有复杂数据积累并且已经具备大数据分析基础的公司只有百度和阿里两家,同时这两家公司都在至少五年前就开始投入大量资源探索大数据业务。五年后的今天这两家公司数据分析到达如何地步了呢?百度公司每天净增数据量1PB,说的通俗易懂一点就是每天百度净增数据大约4千亿页文本的样子,但这其中99%都是无效数据,如何筛选出有效数据目前还是一个无法攻克的难关。回看阿里呢?数据使用率5%,依然是大量无效数据,如何对这些数据进行分析也是一筹莫展。也就是说大数据的第一个关卡就剩两家公司了,第二道关卡可能要卡很多年。
好了,现在我已经感受到有人在心中默念美国最大的P2P平台lending club了,那么我就看看他们是如何做到线上风控的。
首先用户在平台上申请借款,lending club在得到用户许可的情况下从experian/trans union/equifax三家大征信局获得用户的信用评分,不同分数有不同额度,也承受不同成本。审核通过后webBank向借款人发放贷款再转让给lending club,最后在转让给投资者。最重要的是,lending club与foliofn合作,推出了线上债券交易平台,当有用户逾期时,可以将债权在该平台上转让,专业投资者会在上面进行债券购买,数据显示,逾期16天以内的债权能在10%左右的折扣下出售,逾期16~30天的债权能在30%左右的折扣率成交。lending club有三个核心元素,第一:200年完善的征信体系。第二:非标准资产能够有效证券化。第三,有长期的历史数据对风险水平进行定价。以上三点目前中国还不具备。
综上所述,中国目前还不能依靠征信或者大数据解决信贷审核问题,就好像袁隆平老师杂交水稻一样,先试几年,抗虫害够硬、对环境没有破坏、确定能够大幅增产了,再大面积推广。未来即便征信系统对接完毕了,我也希望P2P平台能够以审慎的原则对待它,别上来就临床治疗,会出人命的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07