
业务治理重点:大数据智能
在大型企业内,信息治理专员的主要职责是确保企业数据遵循日益复杂的法规合规性规则。近年来,治理的职能不断扩大,然而,随着企业领导人开始意识到企业产生和存储的大量信息提供了一个现成的业务数据智能的资产。 信息治理专员则越来越多地被要求挖掘大数据分析,来寻找为公司创造收益的新方法,同时还需要维护法律和法规合规性。
Jeffrey Ritter,律师,同时也是牛津大学的外部讲师,最近讨论了信息治理专员是如何超越维护数据遵从公共法律和法规以外的职能。在本期问与答中,Ritter解释了公司董事会对于大数据智能的需求增加,分析投资对于这一改变的影响,以及治理专员要如何适应。
随着新的大数据产品和服务的出现,企业对于信息治理的要求是如何转变的?
Jeffrey Ritter:成功的大数据智能需要企业的历史信息,用于分析。首先,这些内容必须符合可以分析的数据类型规则。当这些数据不符合规则时,对于大数据的投资则被稀释,因为可以用于分析的数据变少。因此,信息治理专员的职责就超越了确保数据遵从公共法规。现在,信息治理还必须确保整个公司的记录通过验证,确保这些记录可以用于大数据分析。
有哪些大数据规则?
Ritter:关键是,导入的数据符合结构规则,比如数据库使用的相关信息分类和结构方案。但很多大数据分析引擎在接收和处理来自不同的数据源的数据时,结果最理想。引擎需要知道信息的来源,以及这些信息是如何被维护的。
这些规则还强调数据的溯源。信息治理团队必须在任何IT项目的前端根据这些规则制定合规性。如果他们不这样做,最终的输出数据对于大数据产生的价值创造分析可能是无用的。
你能举一些新的数据存储库的例子,是信息治理团队必须包含的吗?
Ritter:21世纪终结了结构化记录。发票、采购订单、发货通知、商业协议,所有这些传统的业务信息资产格式被拆解为大量的数据湖和数据集合,数据可以在多种结构中组合和使用。
这使得信息治理非常困难。数据流、图形数据、linux系统加载的应用执行日志,身份管理系统的验证日志,这些都不是传统的“记录”,但它们对于利用大数据获得潜在的商业利润都是至关重要的。最好的业务数据智能是由分析很多小记录产生的——这就是挑战所在。
企业领导人,和信息治理专员在信息治理上,仍然关注合规性要求的原始内容记录。但更困难的挑战则是处理这些新类型的大量数据。
许多公司的数据管理计划,要获得完成他们原本的合规性职能的资金,已经很困难了。信息治理经理要如何才能确保获得应对这些新挑战的额外资金?
Ritter:大数据分析和商业智能市场的快速增长是有原因的。数据输出在帮助企业创造新的收益,并快速做出业务决策上非常有用。当信息治理可以和管理IT系统相关联,使数据在大数据分析中更有效,它就可以帮助创造新的收益和提高业务速度。
事实上,强大的信息治理对于大数据智能的投资回报是一个有力的加速器。当信息治理专员完全投入到内容和数据溯源的设计中,数据管理成为一个积极的业务功能,远比维护原始内容记录遵循公共法律的法规,要重要的多。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12