
大数据遇上大型机 结果会如何?
进入数据大爆炸时代,企业所面临的局面无疑更复杂了。看着日益累积的各种数据,相信有不少用户都有这样的感觉:明知面前是座金矿,却苦于没有合适的开采方法,只能任机会流逝。
当然,并不是所有用户都在坐等时机,也有不少在尝试的。比如有用户在用分布式平台进行数据的整合、存储、分析、应用,也有用户在用集中式平台进行相关的工作,同样还有用户从分布式平台转向集中式平台。
究竟谁好?各有各的道理,不妨看个具体的案例,从中或许能受到一些启发。
Banca Carige实践心得
Banca Carige Group (Banca Carige) 是意大利的一家银行,距今已经有500多年的历史。其雇佣约6000名员工,有650多个网点,服务120万客户,年营业总额超过8亿欧元。
随着银行业的主战场不断转向移动端,Banca Carige凭借500多年服务客户的经验,果断地提出了改进计划,即通过数据分析更好地了解客户行为,从而达到吸引新客户服务老客户的目的。
最终Banca Carige选择了IBM 大型机作为未来的业务承载平台。至于原因,就像Banca Carige 的ICT治理经理Daniele Cericola所讲,“在银行业中,可用性与安全性对于业务而言至关重要,而大型机的这些性能都经过了实践检验,这一事实使其自然而然成为了我们新计划的平台之选。”
从这个角度看,Banca Carige选择大型机更多还是从安全性、可用性方面出发的结果。由于其之前一直在使用大型机(多年来,Banca Carige一直在采用IBM DB2数据库的IBM CICS Transaction Server上运行包括账户、支付、贷款等在内的核心银行系统,而该数据库位于可运行IBM z/OS的两台IBM zEnterprise EC12 服务器上),给出这样的理由并不意外,那究竟大型机在数据分析方面的表现如何呢,是不是能满足Banca Carige的需求?
“满意。”Daniele Cericola表示,“通过整合,我们所有的分析都是针对大型机的数据仓库进行的,借此我们可获得单一事实来源,而且在为所有新需求开发分布式数据集市时能够避免多余的成本投入和复杂性。”
据悉,Banca Carige已经将原来运行在分布式环境的多个营销数据库和应用迁移至了大型机,并借助运行在Red Hat Enterprise Linux上的IBM Campaign软件开发了新的活动管理数据模型,同时将这些整合至大型机环境中,从而使 DB2 for z/OS 成为分析和大数据唯一的数据储存库。
简单来说,相当于用大型机构建了一个平台,现在这些数据统一在这个平台进行处理。很显然,这个过程所需要的采购成本、电力成本、人力成本在一定范围内并不会像分布式平台那样随着业务量的增加而增加。也就是说,使用大型机做大数据分析并不一定比使用分布式架构成本更高。
虽然短短几段话,但是透露的内容很多。比如鉴于大型机强大的整合能力,最终的TCO并不一定高;再比如支持Linux,使得其解决方案变得更加丰富……
就像Daniele Cericola 在采访中所讲,“在大型机的 Linux 环境中运行我们的移动银行服务,使我们在大型机发展方面又迈进了一步。我们的关键业务价值是,最重要的服务可通过一致稳定的具有高度安全性的平台进行统一管理,而且该平台要能提供一流的可扩展性与性能。”应该说这就是对大型机核心价值的准确概括。
其实类似这样的应用案例还有很多,比如花旗银行、乐购、珠海社保等。
与时俱进的大型机
当然,举了这么一个例子笔者想说的并不是一定要使用大型机进行数据分析,事实上,大型机肯定有其更擅长、更适用的领域。笔者想说的是,在分布式环境大张旗鼓的今天,其实用户还有另外的选择,而且这个选择本身也在发生着变化,这才是最重要的。
说起大型机本身,可能很多人的印象依旧停留在几年甚至十几年前,呆板、贵、封闭。事实上,大型机早已通过实际行动着力改变这一形象。
它不断开放自己,尽管不能说IBM一直在引领潮流,但至少也是在紧跟趋势,比如IBM是 最早的Linux支持者,IBM大型机也很早就支持了Linux,再比如随着OpenStack的兴起,IBM大型机也支持在OpenStack平台上对 其进行统一管理。另外还有很多开源软件,IBM大型机均可支持,包括Docker、Hadoop、Spark、MongoDB、MariaDB等。
它不断提升自己的性能,单台最高支持8000台虚拟机,提供无与伦比的扩展性;在动态多线程技术的帮助下,Linux和Java工作负载运行速度提升30%。论整合能力、性能、安全性、可靠性,绝对无人可及。
它不断以更低的成本来面对用户,当然这个成本不仅是采购成本,因为IT系统的采购成本只占总体拥有成本(TCO)的一小部分,还包括电力、运维、管理等成本,试想能容纳8000台虚拟机的大型机能整合多少台服务器?应该说这个数量是惊人的,由此带来的后期使用成本的节约也是巨大的。
凭借着与时俱进,市场给了大型机、给了IBM积极的反馈。根据IDC发布的2015年第 二季度服务器市场调研报告显示,该季度IBM z13大型机表现强劲,同比增幅近两位数。根据刚刚发布的2016年第一季度IBM财报显示,与去年同期相比,来自z Systems大型主机服务器产品的营收增长了16%(计入汇率变动影响后上涨了21%)。以MIPS(每秒百万指令数)计算的z Systems所交付的计算能力,上升了28%。
记者观察
好多人说大型机不行了,但我们看到的却是大型机的逆势增长,这说明什么?这表明集中式与 分布式之争从来就不是非此即彼的关系,用户关心的只是是否有更好解决问题的方案,这才是他们的根本出发点。因此,就厂商而言,要做的是不断完善方案,并让 用户认识到其中的价值;对于用户而言,则要对各方解决方案有个充分的比较。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12