京公网安备 11010802034615号
经营许可证编号:京B2-20210330
运用大数据驱动创新发展
大数据时代,如何利用数据资源转变经济增长方式、助推创新驱动发展,使其服务于个人生活、企业决策和国家治理,是值得深思的重要战略课题。大数据不仅意味着海量、多样、迅捷的数据处理,更是一种颠覆的思维方式、一项智能的基础设施、一场创新的技术变革。我们在拥抱大数据的同时,可以“云—链—端”的构架开发利用好“云”计算、“链”建设和“端”创新,让大数据真正带来大产业、大机遇和大红利。
“云”计算。云是大数据的处理中心,云计算能有效融合信息化与工业化,使生产效率得到大幅提升。正是有了云,工业时代的“大”数据变成为互联网时代的大数据。云计算和大数据犹如车之两轮,鸟之双翼——云计算是大数据成长的驱动力,大数据需要云计算实现解决方案。摩尔定律揭示了硬件的飞速发展,存储和运算能力已经不是信息技术进步的主要制约因素,新的瓶颈正在向数据转移。数据不仅反映了事物的客观状态,还蕴藏着事物的发展规律。这种规律支配着整个社会的发展,一旦掌握,就可以把握社会的脉搏甚至预测未来。越来越多的自然数据和社会数据,都可以通过定量方法的计算来分析解决。从全球视野来看,“量化决策”和“数据治国”已成为大势所趋。当前,我们在实现中国梦的征途上应学会从“定性”走向“定性定量相结合”,树立基于数据、事实和理性分析的管理理念。从战略角度来看,应将云计算聚焦于3D打印、人工智能等新兴领域,让大数据辅助科学研究,把握好新一轮科技革命和产业变革的发展机遇。
“链”建设。链是大数据的基础设施,应构建链路打造云到云、云到端、端到端的互联互通,实现不同层次不同应用领域的数据共享和高效利用。大数据的链路如同具备交互感应、中继传递的智能网络,可以整合“信息孤岛”和“应用孤岛”,让每个联网的终端化身数据战场的指挥官。现今,数据已成为像能源、矿产一样的战略性资源,接踵而来的便是数据安全和隐私问题,尤需重视“云—链—端”的联合防御。为回避数据泄露风险,应立足于国产的大数据技术与平台,积极支持和引导企业加大研发力度,努力突破核心技术,逐步提高关键设施的自主可控水平。同时,要就“数据所有权”和“数据隐私权”制定法规或标准,通过法律来保护公民和国家的数据安全。随着大数据的发展,数据传输将朝着高速率、大容量、集成化和体系化方向演进。在建设过程中,既要制定好互通标准,实现多种设施的协同发展,又要前瞻性地预留接口,以便未来的升级换代和拓展扩容。
“端”创新。端是大数据的创新方向,既要创新终端的数据采集方法,去伪存真、多角度验证数据的可信性;又要尽可能将数据开放给终端,推动终端的创新应用。从市场来看,应发展智能终端,探索新的商业模式;就政府而言,应建设智慧城市,推进国家治理现代化。目前,企业无法深入应用大数据的主要原因在于,没有激发数据与商业场景的良性互动。应让需求和技术实时、动态、经济的对接,使用户成为大数据的提供者和受益者,实现运营和使用的迭代闭环运行。与企业相比,政府在数据方面具有天然优势,不能只充当数据的“账房先生”。应唤醒沉睡在档案袋、存储器中的有效数据,为科学制定政策和合理配置资源提供可靠依据。党的十八届三中全会提出推进国家治理体系和治理能力现代化,这就要求政府部门改变传统思维方式,激活那些束之高阁的闲置数据,将其运用到经济社会的各个方面,带动政府公共服务的技术创新、管理创新和服务创新。应打破部门数据的分割状态,整合数据资源形成合力,以多种形式向公众实时开放各类数据,实现大数据从群众中来,到群众中去。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29