
大数据技术对传统媒体转型升级的三大价值
网络和数字技术的快速发展,带来媒体格局的深刻变革。数字新兴媒体发展之快、覆盖之广超乎想象,“数字化”正以旋风般的速度带给传统媒体行业转型升级三大价值。
一、重建用户连接价值,传统媒体或可实现“弯道超车”
传统媒体陷入困境很大一部分原因是与用户连接失效。近几年来,在互联网媒体对传统媒体的猛烈冲击下,传统媒体的受众大量流失,导致入口价值大大贬值,广告收入大幅度下滑,专业人才流失。因此传统媒体的核心竞争力被大大减弱,并陷入恶性循环。
据CNNIC数据显示,截至2015年12月,中国网民规模达6.88亿,全年共计新增网民3951万人。互联网普及率为50.3%,较2014年底提升了2.4个百分点。中国手机网民规模达6.20亿,较2014年底增加6303万人。网民中使用手机上网人群占比由2014年的85.8%提升至90.1%。中国网民通过台式电脑和笔记本电脑接入互联网的比例分别为67.6%和38.7%;手机上网使用率为90.1%,较2014年底提高4.3个百分点;平板电脑上网使用率为31.5%;电视上网使用率为17.9%。随着4G的大规模推广和应用,未来的手机网民规模必将迅猛增加。而传统媒体要实现自身的真正转型,就必须以用户为中心重建用户连接,进而重构自身的内容输出模式和创新盈利模式。而要重建用户连接,既需要通过自身的数字化尽可能地抓取用户信息,又需要创新媒介内容和形式激发受众主动地阅读及分享,不断拉近媒体和用户之间的距离。
二、传统媒体行业将继续通过跨界融合实现转型
近几年随着互联网技术的快速发展,给传统媒体带来了前所未有的机遇与挑战,转型融合成为传统媒体未来发展的必然趋势。搭乘“互联网+”的快车,深入转型、深层融合,在这个属于信息产业的行业不断上演:
在国外,早在2013年全球电商平台亚马逊创始人贝索斯个人以2.5亿美元收购受巨亏影响的美国报纸《华盛顿邮报》,被收购后的《华盛顿邮报》一直扩展数字业务,创造新的收入来源;在国内,阿里巴巴在2015年以12亿元入股上海文广旗下第一财经传媒有限公司,阿里巴巴和上海文广将在新媒体和金融信息服务领域实现战略合作;同样在2015年,杭州报业集团旗下的上市公司华媒控股与领先的“互联网+”解决方案提供商泰一指尚签署《战略合作框架协议》,双方以互联网核心技术为驱动,优化整合资源,共同打造全新的互联网媒体平台,构建代表未来发展趋势的产业模块。由此可见,在“互联网+”的大时代背景下,传统媒体的数字化是大势所趋。
跨界合作盛行,全媒体融合继续演进互联网和传统媒介,内容和营销的边界也逐步模糊。通过信息技术对传统产业的整合,特别是数据技术与传统产业的深度融合,形成了新的内容生产方式,实现了传统媒体产业自身的数字化升级,也彻底创新了传统媒体的作业模式。
三、大数据技术是提升传统媒体行业竞争力的关键要素
伴随着移动互联网的快速成长,人们开始以电脑、智能手机、PAD、互联网电视获取信息,终端的私人化带来媒体选择的个性化,用报纸版面、电视节目单强制信息渠道的方式越来越弱,同时新的媒体形式不断出现并争夺受众的阅读习惯。传统媒体在面临这种困境下,开始全力布局移动客户端:门户网站wap版、微信公众平台、微博粉丝平台、移动APP等工具层出不穷。信息传播从单一的文字及画面演变为文字、视频、音频、互动、电商导购等多种技术形式互动展示的新方向,也更加受到受众的青睐。在传统媒体转型升级的路径中,大数据技术作为当代的数据资源的重要支撑,对传统媒体的转型与发展起着重要作用。
大数据技术给传媒带来的最大的思维变革,其一,在于能够通过数据挖掘等方式,实现对读者和受众个性化需求的准确定位和掌握;其二,在于能够通过技术手段低成本地实现信息和受众个性化、定制化需求之间的智能化匹配。以Facebook为例,Facebook借助大数据技术收集社交平台上的热点信息,通过不间断的监控,采集最受用户关注、转发量最大的热点信息,加工形成新闻产品或原生广告向用户推送。
数据时代,传统媒体的运作方式正在发生深刻变革。“内容为王,大数据技术为支撑”是传统媒体转型的有效途径。2016年,将有更多传统媒体行业巨头进军大数据产业。数据资产已经成为物质资产和人力资源同样重要的资产,也是生产和运营的重要环节,大数据技术的使用将成为未来提升传统媒体行业竞争力的关键要素。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12