京公网安备 11010802034615号
经营许可证编号:京B2-20210330
汽车大数据 汽车是大数据时代的先锋
时至今日,互联网已经行至一个中间点:上半场是互联,下半场是数据,互联的任务已经基本完成,数据将成为下半场的主角。这一点,在汽车领域也很明显。
当下的产业互联网,让越来越多的实物相连、机器相连、人机相连。而在汽车领域,车联网将通过建立在汽车内部、外部的连接,源源不断地产生数据流,引导汽车走向智能化、服务个性化。
车联网推动共享经济
从内容来看,互联网的故事只讲了三分之一,它的主角是服务业,电商、共享经济是“互联网+服务业”中的两股浪潮。
相同的是,以阿里、京东为代表的电商与共享经济的发展都离不开数据;不同的是,电商把供需关系数据化,共享经济是把消费者之间的关系数据化。共享经济的本质也在于数据化,在一个平台上实现快速匹配和交易,让资源流动起来。
我们正处于一个“万物皆联网,无处不计算”的时代,实物相连、机器相连、人体相连,将引起数据爆炸,车联网也将迎来发展的机遇。
车联网将是这样一番场景:它把汽车内部的重要部件连接起来,把汽车和汽车、个人设备、基础设施、云端都连接起来,并且产生源源不断的数据流。
未来的商机是智能化、个性化
作为工业时代的标志之一,汽车成了工业时代的先锋,今天也是大数据时代的先锋。大数据时代,就是一个智能时代、个性化服务的时代。未来,车联网能够带来的商机也在于此。
首先,汽车将越来越智能化。
谷歌的科学家说,我们没有更好的算法,有的只是更多的数据。虽然无人驾驶汽车还面临很多挑战,如晴天时行驶顺畅,下雨、下雪可能失灵。解决之道就是数据。通过收集不同历史时期的天气数据,汽车就能适应不同的天气条件。
汽车智能化的空间非常大,但也有很长的路要走。乐观地估计,汽车完全智能化之后,它将变成人类除了家、办公室和公共空间外的第四空间。人在车上可以自由做自己的事情,车会带人去想去的地方。
其次,汽车服务将更加个性化。
个性化服务的前提,是拥有源源不断的数据流。根据这些数据,可以推测人们的行为,由此再推出个性化的解决方案。个性化服务需求巨大,我们今天看到的只是小小的一角,整个需求都隐藏在冰山之下。
通过车联网,司机的驾驶数据可以被收集。如苏州金龙的G-BOS,能够实现安全驾驶管理、油耗管理、GPS定位管理、远程故障报警管理等功能。
数据在记录一切,而且颗粒度越来越小。数据可以很好地还原驾驶时的真实情况,原来这些是没办法掌握的信息。通过了解司机的真实驾驶行为,保险公司还可以发挥数据的外部性,推出个性化的保险。
有了数据,4S店的服务将更加个性化。如汽车在4S店维修时,车主常担心对方把好的零件拆了换上不好的零件,但这个问题也将逐步得到解决。每个汽车零件都有一条数据,形成自己的标识,由此实现防伪。
个性化的服务,还包括对不同车辆制定不同的解决方案,物流车、客运大巴、出租车、校车等都有不同的行驶路线和乘用人群,解决方案也应该不同。如校车上小孩子多,需考虑孩子们的身高、上下车习惯等因素制定解决方案。
今天,我们处在一个万事万物都会留下数据的世界,大数据会带领我们迈向一个更安全的世界。
不过,需要注意的是,大数据浪潮的拐点就要来了。原来使用数据根本不用告诉用户,但今天用户数据意识正在崛起,未来使用数据将逐步需要取得用户授权。如果没有车主的数据、汽车运行的数据,智能化、个性化服务只能是空中楼阁,这也是对车联网产业的挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27