
探索大数据在零售行业的创新性应用
随着网络和信息技术的不断普及,人类产生的数据量正在呈指数级增长,而云计算的诞生,更是直接把我们送进了大数据时代。“大数据”作为时下最时髦的词汇,开始向各行业渗透辐射,颠覆着很多特别是传统行业的管理和运营思维。
大数据应用,其真正的核心在于挖掘数据中蕴藏的情报价值,而不是简单的数据计算。
其在零售行业有以下四方面的创新性应用:
成功的品牌离不开精准的市场定位,而基于大数据的市场数据分析和调研是企业进行品牌定位的第一步。
零售行业企业要想在市场中分得一杯羹,需要架构大数据战略,拓宽零售行业调研数据的广度和深度,从大数据中了解零售行业市场构成、细分市场特征、消费者需求和竞争者状况等众多因素,在科学系统的信息数据收集、管理、分析的基础上,提出更好的解决问题的方案和建议,保证企业品牌市场定位独具个性化,提高企业品牌市场定位的行业接受度。
企业想进入或开拓某一区域零售行业市场,首先要进行项目评估和可行性分析,只有通过项目评估和可行性分析才能最终决定是否适合进入或者开拓这块市场。如果适合,那么这个区域人口是多少?消费水平怎么样?客户的消费习惯是什么?市场对产品的认知度怎么样?当前的市场供需情况怎么样?公众的消费喜好等等。这些问题背后包含的海量信息构成了零售行业市场调研的大数据,对这些大数据的分析就是我们的市场定位过程。
企业开拓新市场,需要动用巨大的人力、物力和精力,如果市场定位不精准或者出现偏差,其给投资商和企业自身带来后期损失是巨大甚至有时是毁灭性的,由此看出市场定位对零售行业市场开拓的重要性。只有定位准确乃至精确,企业才能构建出满足市场需求地产品,使自己在竞争中立于不败之地。
2、成为零售行业市场营销的利器从搜索引擎、社交网络的普及到人手一机的智能移动设备,互联网上的信息总量正以极快的速度不断暴涨。每天在微博、微信、论坛、新闻评论、电商平台上分享各种文本、照片、视频、音频、数据等信息高达的几百亿甚至几千亿条。
这些信息涵盖着:商家信息、个人信息、行业资讯、产品使用体验、商品浏览记录、商品成交记录、产品价格动态等等海量信息。这些数据通过聚类可以形成零售行业大数据,其背后隐藏的是零售行业的市场需求、竞争情报,闪现着巨大的财富价值。
通过获取数据并加以统计分析来充分了解市场信息,掌握竞争者的商情和动态,知晓产品在竞争群中所处的市场地位,来达到“知彼知己,百战不殆”的目的;同时企业通过积累和挖掘零售行业消费者档案数据,有助于分析顾客的消费行为和价值趣向,便于更好地为消费者服务和发展忠诚顾客。
如果企业收集和整理消费者的消费行为方面的信息数据,如:消费者购买产品的花费、选择的产品渠道、偏好产品的类型、产品使用周期、购买产品的目的、消费者家庭背景和个人消费观等。
通过这些数据,建立消费者大数据库,统计和分析来掌握消费者的消费行为、兴趣偏好和产品的市场口碑现状,再根据这些总结出来的现状制定有针对性的营销方案和营销战略,那么其带来的营销效应是可想而知的。因此,可以说大数据中蕴含着出奇制胜的力量,将成为零售行业市场竞争中立于不败之地的利器。
3、支撑零售行业收益管收益管理意在把合适的产品或服务,在合适的时间,以合适的价格,通过合适的销售渠道,出售给合适的顾客,最终实现企业收益最大化目标。要达到收益管理的目标,需求预测、细分市场和敏感度分析是此项工作的三个重要环节,而这三个的环节推进的基础就是大数据。
需求预测是通过对建构的大数据统计与分析,采取科学的预测方法,通过建立数学模型,使企业管理者掌握和了解零售行业潜在的市场需求,未来一段时间每个细分市场的产品销售量和产品价格走势等,从而使企业能够通过价格的杠杆来调节市场的供需平衡,并针对不同的细分市场来实行动态定价和差别定价。
细分市场为企业预测销售量和实行差别定价提供了条件,其科学性体现在通过零售行业市场需求预测来制定和更新价格,最大化各个细分市场的收益。敏感度分析是通过需求价格弹性分析技术,对不同细分市场的价格进行优化,最大限度地挖掘市场潜在的收入。 大数据时代的来临,为企业收益管理工作的开展提供了更加广阔的空间。
4、创新零售行业需求开发随着论坛、博客、微博、微信、电商平台、点评网等媒介在PC端和移动端的创新和发展,公众分享信息变得更加便捷自由,而公众分享信息的主动性促使了“网络评论”这一新型舆论形式的发展。
在微博、微信、论坛、评论版等平台随处可见网友使用某款产品优点点评、缺点的吐槽、功能需求点评、质量好坏与否点评、外形美观度点评、款式样式点评等信息,这些都构成了产品需求大数据。
作为零售行业企业,如果能对网上零售行业的评论数据进行收集,建立网评大数据库,然后再利用分词、聚类、情感分析了解消费者的消费行为、价值趣向、评论中体现的新消费需求和企业产品质量问题,以此来改进和创新产品,量化产品价值,制订合理的价格及提高服务质量,从中获取更大的收益。
大数据,并不是一个神秘的字眼,只要零售行业企业平时善于积累和运用自动化工具收集、挖掘、统计和分析这些数据,都会有效地帮助自己提高市场竞争力和收益能力,盈得良好的效益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10