
探索大数据在零售行业的创新性应用
随着网络和信息技术的不断普及,人类产生的数据量正在呈指数级增长,而云计算的诞生,更是直接把我们送进了大数据时代。“大数据”作为时下最时髦的词汇,开始向各行业渗透辐射,颠覆着很多特别是传统行业的管理和运营思维。
大数据应用,其真正的核心在于挖掘数据中蕴藏的情报价值,而不是简单的数据计算。
其在零售行业有以下四方面的创新性应用:
成功的品牌离不开精准的市场定位,而基于大数据的市场数据分析和调研是企业进行品牌定位的第一步。
零售行业企业要想在市场中分得一杯羹,需要架构大数据战略,拓宽零售行业调研数据的广度和深度,从大数据中了解零售行业市场构成、细分市场特征、消费者需求和竞争者状况等众多因素,在科学系统的信息数据收集、管理、分析的基础上,提出更好的解决问题的方案和建议,保证企业品牌市场定位独具个性化,提高企业品牌市场定位的行业接受度。
企业想进入或开拓某一区域零售行业市场,首先要进行项目评估和可行性分析,只有通过项目评估和可行性分析才能最终决定是否适合进入或者开拓这块市场。如果适合,那么这个区域人口是多少?消费水平怎么样?客户的消费习惯是什么?市场对产品的认知度怎么样?当前的市场供需情况怎么样?公众的消费喜好等等。这些问题背后包含的海量信息构成了零售行业市场调研的大数据,对这些大数据的分析就是我们的市场定位过程。
企业开拓新市场,需要动用巨大的人力、物力和精力,如果市场定位不精准或者出现偏差,其给投资商和企业自身带来后期损失是巨大甚至有时是毁灭性的,由此看出市场定位对零售行业市场开拓的重要性。只有定位准确乃至精确,企业才能构建出满足市场需求地产品,使自己在竞争中立于不败之地。
2、成为零售行业市场营销的利器从搜索引擎、社交网络的普及到人手一机的智能移动设备,互联网上的信息总量正以极快的速度不断暴涨。每天在微博、微信、论坛、新闻评论、电商平台上分享各种文本、照片、视频、音频、数据等信息高达的几百亿甚至几千亿条。
这些信息涵盖着:商家信息、个人信息、行业资讯、产品使用体验、商品浏览记录、商品成交记录、产品价格动态等等海量信息。这些数据通过聚类可以形成零售行业大数据,其背后隐藏的是零售行业的市场需求、竞争情报,闪现着巨大的财富价值。
通过获取数据并加以统计分析来充分了解市场信息,掌握竞争者的商情和动态,知晓产品在竞争群中所处的市场地位,来达到“知彼知己,百战不殆”的目的;同时企业通过积累和挖掘零售行业消费者档案数据,有助于分析顾客的消费行为和价值趣向,便于更好地为消费者服务和发展忠诚顾客。
如果企业收集和整理消费者的消费行为方面的信息数据,如:消费者购买产品的花费、选择的产品渠道、偏好产品的类型、产品使用周期、购买产品的目的、消费者家庭背景和个人消费观等。
通过这些数据,建立消费者大数据库,统计和分析来掌握消费者的消费行为、兴趣偏好和产品的市场口碑现状,再根据这些总结出来的现状制定有针对性的营销方案和营销战略,那么其带来的营销效应是可想而知的。因此,可以说大数据中蕴含着出奇制胜的力量,将成为零售行业市场竞争中立于不败之地的利器。
3、支撑零售行业收益管收益管理意在把合适的产品或服务,在合适的时间,以合适的价格,通过合适的销售渠道,出售给合适的顾客,最终实现企业收益最大化目标。要达到收益管理的目标,需求预测、细分市场和敏感度分析是此项工作的三个重要环节,而这三个的环节推进的基础就是大数据。
需求预测是通过对建构的大数据统计与分析,采取科学的预测方法,通过建立数学模型,使企业管理者掌握和了解零售行业潜在的市场需求,未来一段时间每个细分市场的产品销售量和产品价格走势等,从而使企业能够通过价格的杠杆来调节市场的供需平衡,并针对不同的细分市场来实行动态定价和差别定价。
细分市场为企业预测销售量和实行差别定价提供了条件,其科学性体现在通过零售行业市场需求预测来制定和更新价格,最大化各个细分市场的收益。敏感度分析是通过需求价格弹性分析技术,对不同细分市场的价格进行优化,最大限度地挖掘市场潜在的收入。 大数据时代的来临,为企业收益管理工作的开展提供了更加广阔的空间。
4、创新零售行业需求开发随着论坛、博客、微博、微信、电商平台、点评网等媒介在PC端和移动端的创新和发展,公众分享信息变得更加便捷自由,而公众分享信息的主动性促使了“网络评论”这一新型舆论形式的发展。
在微博、微信、论坛、评论版等平台随处可见网友使用某款产品优点点评、缺点的吐槽、功能需求点评、质量好坏与否点评、外形美观度点评、款式样式点评等信息,这些都构成了产品需求大数据。
作为零售行业企业,如果能对网上零售行业的评论数据进行收集,建立网评大数据库,然后再利用分词、聚类、情感分析了解消费者的消费行为、价值趣向、评论中体现的新消费需求和企业产品质量问题,以此来改进和创新产品,量化产品价值,制订合理的价格及提高服务质量,从中获取更大的收益。
大数据,并不是一个神秘的字眼,只要零售行业企业平时善于积累和运用自动化工具收集、挖掘、统计和分析这些数据,都会有效地帮助自己提高市场竞争力和收益能力,盈得良好的效益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12