
大数据文化:传统企业互联网下的组织颠覆
在世界的发展历程中,有两类企业被奉为圭皋,一类是以通用电气为代表的传统企业,他们管理严谨,逻辑严密,员工西装革履,遵守着严格的上下班制度,被誉为世界跨国企业的典范;另一类以谷歌为代表的互联网企业,他们行事不拘一格,办公活泼灵活,员工穿着自由开放,创造力十足,被称作互联网时代的代言人。但是,随着互联网时代的到来,大量以通用为标杆的企业逐渐陷入了迷思,到底什么才是真正的企业文化,组织设计又该何去何从?也许从大数据文化的视角能给组织者一些启示。
正如《组织设计》一书中所坦言,所谓组织设计,所谓管理不过是对那些压在管理者头上的杂乱无章、不断变化而令人困惑的不同需求保持觉察、给予关注、进行分类,并作出优选排序。它是一种从混沌中创建秩序,在传统看来更倾向于艺术,而不是科学。如何能够在艺术中寻找规律,就是需要一种真正的文化予以配合了。
对于传统企业而言,内外部环境动态变化下的复杂决策,让其必须通过组织的强制性体制发育出严格的组织架构与研究功能以降低决策失误的可能性。但在互联网的大潮下,这种组织架构的僵化、反应迟缓逐步被更加灵活后来居上的互联网企业所击败,成为跨界打击的牺牲品。随着互联网的普及,互联网赋予了用户更多的权利,更加强了信息的传播效率,也许过去可以用一个星期乃至一个月应对的突发事件,对于企业而言只剩下24小时甚至更少,这样流程化、层级化的体系就不再是降低决策失误的代名词,反而会成为决策的阻碍。那企业该怎么办呢?答案可能就是大数据文化。
何谓大数据文化?简而言之就是在大数据采集的基础上,利用大数据改革企业的组织架构,分析企业的组织决策,最终实现实时响应、快速应对,让传统企业具备与互联网企业类似的企业管理模式。具体来说,借助《组织设计》的理论可以有以下的做法:
第一步企业组织全数据化改造。借助企业外部与内部的力量将企业的发展状态数据化,比如利用微信平台分析企业的客群动态,利用阿里巴巴等电商平台分析企业的交易信息,利用百度等搜索引擎平台搜索企业被关注的舆论热点,以外部大数据为外援,将企业内部的组织流程进行数据化改造,将企业的ERP供应链流程进行数据采集,甚至将部门内部工作流程进行量化,共同组成企业的大数据来源。
第二步企业定制分析闭环。在全数据收集的基础上,将采集的数据进行加工改造,将数据采集与数据分析进行有效对接,通过构建数据模型,将数据第一时间处理为可以使用的数据结论乃至数据成果,从而为下一步的数据辅助决策提供帮助。
第三步构建数据辅助决策体系。前面两部分都仅仅是大数据运用的基础,在此基础上借助大数据的分析成果,在自下而上的领域,改造组织的汇报体系,将多部门逐层汇报体系,改造为大数据自动实时监控体系,从而确保企业不会因为信息传递不畅导致企业决策滞后。在自上而下的领域,则需要根据大数据的分析结果对于企业决策体系进行进一步优化,利用大数据分析结果进行快速决策,从而为企业应对市场变化争取时间。
第四步全公司大数据文化建设。黄仁宇先生一直在分析中国经济发展史的时候感叹到,中国人缺乏数目字管理思维,在企业管理领域更是如此,数据分块孤立,成为数据分析孤岛成为了传统企业的常态。因此,在组织设计上就需要有针对性的培养组织文化,将企业的部门墙向大数据共享转变,从而让大数据成为确保企业发展的有力武器。
面对着互联网的高速发展,数据在企业中将会发生着越来越重要的作用,但是更重要的是大数据文化对于企业的改造,这将是提升传统企业组织效率的一枚有效利器。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14