
以大数据助力国家治理现代化
大国治理需要大智慧。在信息化时代,大智慧往往源于大数据。大数据作为信息时代的基础资源,能有效集成国家经济、政治、文化、社会、生态等方面的信息资源,为国家治理现代化提供基础数据和决策支撑。
助力国家治理顶层设计。国家治理现代化是一个开放而复杂的巨系统,需要动员全社会力量参与。如果依靠单一主体、单一力量,既难负其重,又会导致治理体系结构失衡,甚至偏离国家治理现代化的科学轨道。只有统筹国家治理现代化的目标、主体、客体、过程,系统谋划、整体推进、综合施策,才能达到系统集成的效果。这就要求建立统一、共享的大数据平台,通过对海量数据的采集、挖掘、加工、汇总、整合、存储和分享,为党和政府进行国家治理顶层设计提供坚实的数据支撑,助力党和政府找到国家治理现代化的最优路径。
助力合理规划与实施国家治理。国家治理现代化是国家治理全面、系统的改革和改进,这就需要运用大数据技术,对国家治理进行科学规划与实施。把中国特色社会主义的制度优势转化为国家治理现代化的效能,涉及价值取向、主体、制度、技术等要素。同时,中国特色社会主义经济建设、政治建设、文化建设、社会建设和生态文明建设任务繁重、内容复杂。充分运用大数据分析提供的规律性结论,有利于形成系统完备、科学规范、运行有效的制度体系,使各方面制度更加成熟更加定型,保障国家治理现代化遵循科学性、战略性、长远性、系统性和有效性的原则,在系统治理、依法治理、综合治理、源头治理的轨道上顺利推进,保证国家治理现代化过程规范、运作高效。
助力党和政府科学决策。科学决策是国家治理现代化的核心。信息化时代,科学决策越来越依赖大数据的采集与分析。随着信息技术的发展,每个社会成员均可利用信息化手段表达自己的意愿和看法,形成海量的“微数据”和“微事件”。决策者往往要对海量的实时数据进行掌握和挖掘,将分散的小概率事件有序关联起来,突破“信息孤岛”限制,排除各种垃圾信息的误导和干扰,把握数据中蕴含的规律性、倾向性问题,提高公共决策的民主化、科学化水平,更好地回应公众关切,满足公众需求和期待。
助力提升国家治理效能。国家治理现代化水平的一个重要体现,是国家治理效能的提升。就我国实际而言,国家治理效能包括促进经济社会发展、满足公共服务需求、处理社会治理危机、维护公共安全等的能力与效果。大数据的开放和流动、使用和共享,能帮助治理主体准确预测经济社会发展趋势、社会公共服务需求、引发社会治理危机和公共安全事件的因素,有效实施事前控制,进一步降低治理成本、提高治理效率,从而进一步提升国家治理的整体效能。
助力优化信息反馈机制。国家治理现代化是“持久战”,需要对发展的每一个阶段进行事中评估,及时了解进展情况,发现问题、纠正偏差,避免出现方向性错误。充分运用大数据的理念、技术和资源,及时、有效地对国家治理现代化进程进行监管,将海量碎片化且无序排列的信息变成有用、有序的数据,可以使监管更有针对性、更加透明。通过大数据对国家治理现代化进程进行精准分析,为决策者提供国家治理现代化推进的真实信息,有助于决策者以目标变量为参照系,及时、准确地掌握国家治理现代化的进程、成效以及存在的问题,并针对评估结果及时进行调整和修正。
助力塑造健康社会心理。国家治理现代化包括社会结构转型。当代社会,人们认识世界和自身的参照系在快速变化。这在一定程度上会导致社会心理稳定性缺失,致使一些人心态浮躁、焦虑感上升。因此,推进国家治理现代化,要注重塑造与之相适应的健康社会心理,为各项改革和实践营造良好社会氛围,提升国家治理现代化“硬件”与“软件”的契合度。在信息时代,大数据打破了单一主体对信息传播流向和内容的垄断,拓宽了信息来源和流通渠道,提高了“信息能见度”,为民众参与国家治理提供了有效技术支撑。对大数据进行分析与集成,可以找到在国家治理现代化的大变革中社会心理浮躁、焦虑的症结所在,有的放矢地采取措施,引导和调整社会预期;引导人们保持战略定力,弘扬一张蓝图绘到底的精神;激发广大人民群众干事创业的活力,为国家治理现代化营造改革创新、和谐稳定的社会氛围。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11