京公网安备 11010802034615号
经营许可证编号:京B2-20210330
以大数据助力国家治理现代化
大国治理需要大智慧。在信息化时代,大智慧往往源于大数据。大数据作为信息时代的基础资源,能有效集成国家经济、政治、文化、社会、生态等方面的信息资源,为国家治理现代化提供基础数据和决策支撑。
助力国家治理顶层设计。国家治理现代化是一个开放而复杂的巨系统,需要动员全社会力量参与。如果依靠单一主体、单一力量,既难负其重,又会导致治理体系结构失衡,甚至偏离国家治理现代化的科学轨道。只有统筹国家治理现代化的目标、主体、客体、过程,系统谋划、整体推进、综合施策,才能达到系统集成的效果。这就要求建立统一、共享的大数据平台,通过对海量数据的采集、挖掘、加工、汇总、整合、存储和分享,为党和政府进行国家治理顶层设计提供坚实的数据支撑,助力党和政府找到国家治理现代化的最优路径。
助力合理规划与实施国家治理。国家治理现代化是国家治理全面、系统的改革和改进,这就需要运用大数据技术,对国家治理进行科学规划与实施。把中国特色社会主义的制度优势转化为国家治理现代化的效能,涉及价值取向、主体、制度、技术等要素。同时,中国特色社会主义经济建设、政治建设、文化建设、社会建设和生态文明建设任务繁重、内容复杂。充分运用大数据分析提供的规律性结论,有利于形成系统完备、科学规范、运行有效的制度体系,使各方面制度更加成熟更加定型,保障国家治理现代化遵循科学性、战略性、长远性、系统性和有效性的原则,在系统治理、依法治理、综合治理、源头治理的轨道上顺利推进,保证国家治理现代化过程规范、运作高效。
助力党和政府科学决策。科学决策是国家治理现代化的核心。信息化时代,科学决策越来越依赖大数据的采集与分析。随着信息技术的发展,每个社会成员均可利用信息化手段表达自己的意愿和看法,形成海量的“微数据”和“微事件”。决策者往往要对海量的实时数据进行掌握和挖掘,将分散的小概率事件有序关联起来,突破“信息孤岛”限制,排除各种垃圾信息的误导和干扰,把握数据中蕴含的规律性、倾向性问题,提高公共决策的民主化、科学化水平,更好地回应公众关切,满足公众需求和期待。
助力提升国家治理效能。国家治理现代化水平的一个重要体现,是国家治理效能的提升。就我国实际而言,国家治理效能包括促进经济社会发展、满足公共服务需求、处理社会治理危机、维护公共安全等的能力与效果。大数据的开放和流动、使用和共享,能帮助治理主体准确预测经济社会发展趋势、社会公共服务需求、引发社会治理危机和公共安全事件的因素,有效实施事前控制,进一步降低治理成本、提高治理效率,从而进一步提升国家治理的整体效能。
助力优化信息反馈机制。国家治理现代化是“持久战”,需要对发展的每一个阶段进行事中评估,及时了解进展情况,发现问题、纠正偏差,避免出现方向性错误。充分运用大数据的理念、技术和资源,及时、有效地对国家治理现代化进程进行监管,将海量碎片化且无序排列的信息变成有用、有序的数据,可以使监管更有针对性、更加透明。通过大数据对国家治理现代化进程进行精准分析,为决策者提供国家治理现代化推进的真实信息,有助于决策者以目标变量为参照系,及时、准确地掌握国家治理现代化的进程、成效以及存在的问题,并针对评估结果及时进行调整和修正。
助力塑造健康社会心理。国家治理现代化包括社会结构转型。当代社会,人们认识世界和自身的参照系在快速变化。这在一定程度上会导致社会心理稳定性缺失,致使一些人心态浮躁、焦虑感上升。因此,推进国家治理现代化,要注重塑造与之相适应的健康社会心理,为各项改革和实践营造良好社会氛围,提升国家治理现代化“硬件”与“软件”的契合度。在信息时代,大数据打破了单一主体对信息传播流向和内容的垄断,拓宽了信息来源和流通渠道,提高了“信息能见度”,为民众参与国家治理提供了有效技术支撑。对大数据进行分析与集成,可以找到在国家治理现代化的大变革中社会心理浮躁、焦虑的症结所在,有的放矢地采取措施,引导和调整社会预期;引导人们保持战略定力,弘扬一张蓝图绘到底的精神;激发广大人民群众干事创业的活力,为国家治理现代化营造改革创新、和谐稳定的社会氛围。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06