京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析不是为了写一份报告
今天这篇文章的直接原因,是为了校正之前发表的“按流程进行数据分析”一文的部分观点。
文中简单描述了数据分析流程:明确分析目的;按照数据分析的目的、具体内容,收集所需数据;对数据进行初步的质量筛查;运用合理的数据分析方法进行分析;最后得到分析的结论,撰写解决问题的建议性报告。
乍读,这个流程好像没什么问题,再读,上面所讲的流程可能更适合调研性工作,提供基于数据分析的解决办法,严格来讲,这个流程遗漏了最为宝贵的环节,没有将数据分析的结论应用到实践中。换句话讲,就是为了报告而分析!
为什么要进行数据分析?肯定不是为了报告。数据分析报告仅是其中的一部分,更为重要的是将数据分析得到的模型或者建议付诸实践,在应用过程中不断的反馈并对模型进行优化调整,最终使业务得以提升,这可能是一个不断往复优化的迭代过程。
数据分析流程,严谨点来说,可以参考CRISP-DM(跨行业数据挖掘标准流程),如上图所示,它将整个数据挖掘过程分解为商业理解、数据理解、数据准备、建立模型、模型评估和结果部署6个步骤。CRISP-DM认为,数据挖掘过程是循环往复的探索过程,6个步骤在实践中并不是按照直线顺序进行,而是在实际项目中经常回到前面的步骤进行不断优化调整。
商业理解:理解项目目标和从业务的角度理解需求,同时将商业问题转化为数据挖掘问题,并制定完成目标的初步计划。
数据理解:从初始的数据收集开始,通过一预处理分析,目的是了解和掌握数据概况,识别数据的质量问题,发现数据的内部属性,或是探索有趣的数据集。
数据准备:涵盖了从原始粗糙数据中构建最终数据集(将作为建模工具的分析对象)的全部工作。数据准备工作有可能被实施多次,而且其实施顺序并不是预先规定好的。这一阶段的任务主要包括:制表,记录,数据变量的选择和转换,以及为适应建模工具而进行的数据清理等等。
构建模型:选择和应用不同的模型技术,模型参数被调整到最佳的数值。比较典型的是,对于同一个数据挖掘的问题类型,可以有多种方法选择使用。一些建模方法对数据的形式有具体的要求,因此,在这一阶段,重新回到数据准备阶段执行某些任务有时是非常必要的。
模型评估:进行最终的模型部署之前,更加彻底的评估模型,回顾在构建模型过程中所执行的每一个步骤,是非常重要的,这样可以确保这些模型是否达到了企业的目标。
模型部署:模型的创建并不是数据分析的最终目的。模型的作用是从数据中找到知识,获得的知识需要便于用户使用的方式重新组织和展现。根据需求,这个阶段可以产生简单的报告,或是实现一个比较复杂的、可重复的数据挖掘过程。在很多案例中,这个阶段是由客户而不是数据分析人员承担部署的工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07