京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在企业中发挥的作用和创新
随着大数据应用的普及,企业越来越重视从大数据中挖掘潜在的商业价值,大数据在企业管理中的应用主要在于提高企业整体分析研究能力、市场快速反应能力,建立起以知识管理为核心的“竞争情报数据仓库”,提高核心竞争力。
在大数据时代,企业将是完全以数据分析驱动的企业,利用大数据分析,能够转化成洞察的能力,充分释放企业潜能,实现转型与进化,本文重在分析大数据在企业当中的所起到的作用。
大数据帮企业了解客户,锁定资源,开展服务
大数据通过相关性分析,将客户、用户和产品有机串联,对用户的产品偏好,客户的关系偏好进行个性化定位,生产出用户驱动型的产品,提供客户导向性的服务。? 从大数据技术方面来看,用数据来指引企业的成长,将不再单单是一句口号。百度副总裁曾良表示,从挖掘的角度来看,他们通过对每天60亿的检索请求数据分析,可以发现检索某一品牌的受众行为特征,进而反馈给企业的品牌、产品研发部门,能更准确地了解目标用户,并推出与用户要求相匹配的产品。
通过运用大数据,不仅可以从数据中发掘出适应企业发展环境的社会和商业形态,用数据对用户和客户对待产品的态度进行挖掘和洞察,准确发现并解读客户及用户的诸多新需求和行为特征,这必将颠覆传统企业在用户调研过程中,过分依赖主观臆断的市场分析模式。
通过大数据技术,可以实现企业对所需资源的精准锁定,在企业在运营过程中,所需要的每一种资源的挖掘方式、具体情况和储量分布等,企业都可以进行搜集分析,形成基于企业的资源分布可视图,就如同“电子地图”一般,将原先只是虚拟存在的各种优势点,进行“点对点”的数据化、图像化展现,让企业的管理者可以更直观地面对自己的企业,更好地利用各种已有和潜在资源。
如果没有大数据,将很难发现曾经认为是完全无关行为间的相互关联性,就如同外媒曾经提到的“啤酒”与“尿片”之间的关联营销一样。因为美国妇女通常在家照顾孩子,她们经常嘱咐丈夫下班回家时为孩子买尿布,而丈夫则顺手购买了啤酒。于是,尿片与啤酒形成了关联。于是美国沃尔玛超市将尿布与啤酒摆在一起,使尿布和啤酒的销量都大幅增加。
通过大数据计算对社交信息数据、客户互动数据等,可以帮助企业进行品牌信息的水平化设计和碎片化扩散
经济学家RichardH.Thaler曾经提出一种观点,“个人观点的微小变化都可以演变为所有人的群体行为模式的重大变革。”在这一重大变革的背景之下,对微小的信息流,企业都必须重视,而客户服务为应对这种情况,也需要像空气一样分布在一些细枝末节之中。企业可以借助社交媒体中公开的海量数据,通过大数据信息交叉验证技术、分析数据内容之间的关联度等,进而面向社会化用户开展精细化服务,提供更多便利、产生更大价值。
实时准确地监控、追踪竞争对手动态,是企业获取竞争情报的利器
数据竞争已经成为企业提升核心竞争力的利器。来自各个方面零碎的庞大数据融合在一起,可以构建出企业竞争的全景图,洞察到竞争环境和竞争对手的细微变化,从而快速响应,制定有效竞争策略。庞大的数据更具有统计意义,能为各种预测模型提供支持,从而能预测未来的发展趋势,帮助企业获得先机。相关的数据整合在一起,能不断产生新的信息和知识,有助于提高生产率、降低经营成本。大幅度地提高企业获取、利用情报的效率,节省情报信息收集、存储、挖掘的相关费用,是提高企业核心竞争力的关键。
及时获取竞争对手的公开信息以便研究同行业的发展与市场需求
大数据正在颠覆传统的价值链,行业之间的分界线变得模糊,让竞争态势不断发生变化。企业若是能紧跟这些变化,及时转型业务模式,就会看到许多扇新的大门正向他们敞开。
以家用恒温器市场为例:家用恒温器行业历来波澜不惊,竞争企业数量少而稳定性较高。一家名为Nest的新进企业向业内老牌企业发起了挑战,推出一款“善于分析”的恒温器——它能够运用各种分析手段,了解客户的偏好和使用模式,而自行做出相应调节。运用以数据为本的创新业务模式,Nest成功唤醒了这片沉寂已久的土地。
为企业决策部门和管理层提供便捷、多途径的企业战略决策工具
企业的竞争不再只是劳动生产率的竞争,而是知识生产率的竞争。数据是信息的载体,是知识的源泉,是企业创造价值和利润的原材料,因此,基于知识的竞争将集中体现在基于数据的竞争上。正如马云所说,未来是数据竞争的时代,谁拥有数据,谁就拥有未来。如今各行各业都出现了以数据分析为竞争力的企业,它们都是在数据分析的基础上与其他企业展开竞争,以提升核心竞争能力,保持或获得行业领先地位,如谷歌、宝洁、沃尔玛等世界知名公司。沃尔玛就建立了一个超大的数据中心,其存储能力高达4PB以上,通过大数据分析,沃尔玛掌握了顾客的购买习惯,不同商品一起购买的概率,购买者在商店所穿行的路线、购买时间和地点,从而确定商品的上架布局以及对分类进行优化;决定对各个商店的不同商品进行增减,以保持最优的库存,降低成本;洞察销售全局,瞬间捕获到各种细微的变化,从而快速响应,制定营销策略。
利用大数据工具对供应链进行分析以选择供应商、优化物流配送方案和进行价格谈判等;利用大数据分析工具对热销商品品种和库存的趋势进行分析,以选定需要补充的商品,分析顾客购买趋势和季节性购买模式,以确定降价商品,并对其数量和运作做出反应。可见,大数据已经成为企业的核心资产,对数据的掌控可以形成对市场的支配,并且获取巨大的回报。
随着大数据应用的普及,企业越来越重视从大数据中挖掘潜在的商业价值,大数据在企业管理中的应用主要在于提高企业整体分析研究能力、市场快速反应能力,建立起以知识管理为核心的“竞争情报数据仓库”,提高核心竞争力。
探码大数据处理平台的构成
当企业的大数据基础工作都准备就绪之后,就可以对这些数据进行有针对性的管理了。探码大数据采用先进的网络爬虫技术,分布式计算能力,针对定制的目标数据源进行网络信息的数据采集、数据提取、数据挖掘、数据处理,从而为各种信息服务系统提供数据输入。
数据采集
要对来自网络包括物联网和机构信息系统的数据附上时空标志,去伪存真,尽可能收集异源甚至是异构的数据,必要时还可与历史数据对照,多角度验证数据的全面性和可信性。
数据提取
要达到低成本、低能耗、高可靠性目标,通常要用到冗余配置、分布化和云计算技术,在存储时要按照一定规则对数据进行分类,通过过滤和去重,减少存储量,同时加入便于日后检索的标签。
基于对用户的结构和行为特征深入挖掘,协助企业进行有效的CRM管理,有效提升营销效果,结合消费者的购买(消费)行为的跟踪分析,协助企业进行有效的品类和渠道管理,提高企业运营效率。
数据处理
有些行业的数据涉及上百个参数,其复杂性不仅体现在数据样本本身,更体现在多源异构、多实体和多空间之间的交互动态性,难以用传统的方法描述与度量,处理的复杂度很大,需要将高维图像等多媒体数据降维后度量与处理,利用上下文关联进行语义分析,从大量动态而且可能是模棱两可的数据中综合信息,并导出可理解的内容。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12