京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的价值不在于存储而是在于分析
社会的发展,市场的繁荣,互联网的热闹,让信息数据越来越多,因此大数据时代诞生。大数据被誉为继云计算、物联网之后IT产业又一次重要技术变革。
中国企业已然身处大数据时代,但如何利用大数据技术,成功提升自身价值,无疑仍是企业需要去探索的课题。近日,Teradata天睿公司大中华区大数据事业部总监孔宇华表示,企业需要从分析入手去挖掘大数据价值,作为连续14年获得Gartner公司评选的数据仓库领导者象限企业,Teradata始终站在数据仓库和数据分析的前列,通过不断的积累与创新,帮助客户充分呈现其大数据价值。
分析:大数据价值之所在
孔宇华认为,数据的价值不在于存储,而是在于分析。
现在,很多企业认为把各种结构化数据与非结构化数据都收集起来,放到一个地方进行统一存储就能够把大数据做好。而事实上,通过分析,才能释放出数据的价值。
“我们想告诉客户的是,不一定需要100个PC服务器才能把大数据做好,不一定需要1PB的数据才能把大数据做好。”孔宇华表示,“做大数据的时候,可以从一个应用、一个业务的需求开始,通过不同的数据分析、不同的数据源,把数据应用起来。”
据了解,TeradataAster大数据探索平台可以汇集不同的数据源、结构化的数据、非结构化的数据,并且有着很多不同的分析方法,如SQL、MapReduce,关联分析、路径分析、文本分析等,通过将这些分析方法进行结合,将充分释放数据的的价值。
此外,Teradata的数据探索平台可以在很短的时间内,将数据进行整理、分析,并将数据的价值展现给客户。“当企业看到数据的价值后,再做相关投入,就不会觉得大数据只是一个概念,是对我这家企业本身毫无影响的。让管理者快速看到大数据背后的真正价值,正是Aster平台的价值所在。”孔宇华表示。
Aster:大数据分析的瑞士军刀
“Aster就是大数据分析的瑞士军刀。”在向记者展示TeradataAster平台最新成果时,孔宇华如此描述。
同Hadoop相比,Aster探索平台基于SQL、SAS或R的界面,利用其进行大数据分析会更方便,而且数据永远存在一个地方,进行不同的分析时只需要调用不同的工具就可以完成,避免了数据在不同位置间的移动。
另外,Aster还提供了丰富的数据接口,能够连接到Hadoop、数据仓库以及其他提供API的数据源,使得数据无需转换到特定格式即可以进行调用分析,节省了大量数据转换与适配的时间。由于Aster提供了基于SQL运算引擎的支持,因此也可以连接到其他主流的商业智能(BI)工具,获得丰富的可视化功能。
孔宇华介绍,针对Aster大数据探索平台,Teradata新增了SNAPFramework(无缝网络分析处理框架),实现了分析引擎和文件存储的无缝和同步集成,能够执行并优化跨分析引擎和文件存储的查询。
SNAPFramework除了行存储,还支持列存储、文件存储等多种存储方式。在分析层面,除了传统的SQL和MapReduce之外,还引入了最新的图形分析引擎,能够处理大规模分析图表查询以及预建图形功能,并可以应用到客户流失、产品关联性、欺诈侦测以及推荐引擎等分析场景。
就在上个月,Teradata实现了Aster与R的整合,通过放宽内存和处理能力限制条件,扩展开源R语言分析能力。在数据库内运行R语言,可高速处理海量数据,满足企业分析能力需求。
孔宇华表示,TeradataAsterR为R语言分析师提供企业级就绪的商业分析解决方案,可以帮助R语言分析师从多个数据源访问及整合详细数据,通过更广泛的分析方法获得更准确的结果,具有高度可扩展性、可靠性和易用性。
针对Hadoop,Teradata则选择了合作与收购的方式。通过与Hortonworks的合作,为客户提供Hadoop相关的平台和工具。通过收购Revelytix和Hadapt,进一步完成了对Hadoop的整合。
“未来在Teradata的统一数据架构中,Hadoop将主要作为数据获取和整合平台,Aster主要作为数据挖掘和分析平台。”孔宇华表示。
平台、人员、流程:大数据落地三要素
怎样做才能实现大数据的落地?孔宇华给出的答案是:平台、人员和流程。
首先,需要有一个合适易用,并且能够和企业现有平台轻易进行结合;其次,需要内部人员具备一定的技能;最后,流程制度方面,需要结合大数据需求的敏捷项目管理方法,根据业务需求快速让技术人员利用平台提升数据的价值。
企业如何利用现有人员的技能,找出数据里的价值,恰恰是TeradataAster平台能够赋予客户的。孔宇华表示,通过TeradataAster大数据探索平台,企业可以在很短的时间内,利用原有的技能进行大数据分析,让管理者看到大数据背后的真正价值。
目前,Teradata在全球范围内已经积累了大量的成功案例,与超过十个行业的用户进行了合作,从传统的优势行业,如电信、金融、保险,到电商、医疗、制造与零售等,TeradataAster能够对各种场景进行深入分析,并通过丰富的可视化形式进行展现。
据悉,Teradata在中国成立了大数据技术研发团队,主要负责平台、数据库与分析函数的开发。另外,Teradata在中国还拥有优秀的大数据实施团队和实施合作伙伴,能够帮助客户充分呈现其大数据的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27