
大数据的价值不在于存储而是在于分析
社会的发展,市场的繁荣,互联网的热闹,让信息数据越来越多,因此大数据时代诞生。大数据被誉为继云计算、物联网之后IT产业又一次重要技术变革。
中国企业已然身处大数据时代,但如何利用大数据技术,成功提升自身价值,无疑仍是企业需要去探索的课题。近日,Teradata天睿公司大中华区大数据事业部总监孔宇华表示,企业需要从分析入手去挖掘大数据价值,作为连续14年获得Gartner公司评选的数据仓库领导者象限企业,Teradata始终站在数据仓库和数据分析的前列,通过不断的积累与创新,帮助客户充分呈现其大数据价值。
分析:大数据价值之所在
孔宇华认为,数据的价值不在于存储,而是在于分析。
现在,很多企业认为把各种结构化数据与非结构化数据都收集起来,放到一个地方进行统一存储就能够把大数据做好。而事实上,通过分析,才能释放出数据的价值。
“我们想告诉客户的是,不一定需要100个PC服务器才能把大数据做好,不一定需要1PB的数据才能把大数据做好。”孔宇华表示,“做大数据的时候,可以从一个应用、一个业务的需求开始,通过不同的数据分析、不同的数据源,把数据应用起来。”
据了解,TeradataAster大数据探索平台可以汇集不同的数据源、结构化的数据、非结构化的数据,并且有着很多不同的分析方法,如SQL、MapReduce,关联分析、路径分析、文本分析等,通过将这些分析方法进行结合,将充分释放数据的的价值。
此外,Teradata的数据探索平台可以在很短的时间内,将数据进行整理、分析,并将数据的价值展现给客户。“当企业看到数据的价值后,再做相关投入,就不会觉得大数据只是一个概念,是对我这家企业本身毫无影响的。让管理者快速看到大数据背后的真正价值,正是Aster平台的价值所在。”孔宇华表示。
Aster:大数据分析的瑞士军刀
“Aster就是大数据分析的瑞士军刀。”在向记者展示TeradataAster平台最新成果时,孔宇华如此描述。
同Hadoop相比,Aster探索平台基于SQL、SAS或R的界面,利用其进行大数据分析会更方便,而且数据永远存在一个地方,进行不同的分析时只需要调用不同的工具就可以完成,避免了数据在不同位置间的移动。
另外,Aster还提供了丰富的数据接口,能够连接到Hadoop、数据仓库以及其他提供API的数据源,使得数据无需转换到特定格式即可以进行调用分析,节省了大量数据转换与适配的时间。由于Aster提供了基于SQL运算引擎的支持,因此也可以连接到其他主流的商业智能(BI)工具,获得丰富的可视化功能。
孔宇华介绍,针对Aster大数据探索平台,Teradata新增了SNAPFramework(无缝网络分析处理框架),实现了分析引擎和文件存储的无缝和同步集成,能够执行并优化跨分析引擎和文件存储的查询。
SNAPFramework除了行存储,还支持列存储、文件存储等多种存储方式。在分析层面,除了传统的SQL和MapReduce之外,还引入了最新的图形分析引擎,能够处理大规模分析图表查询以及预建图形功能,并可以应用到客户流失、产品关联性、欺诈侦测以及推荐引擎等分析场景。
就在上个月,Teradata实现了Aster与R的整合,通过放宽内存和处理能力限制条件,扩展开源R语言分析能力。在数据库内运行R语言,可高速处理海量数据,满足企业分析能力需求。
孔宇华表示,TeradataAsterR为R语言分析师提供企业级就绪的商业分析解决方案,可以帮助R语言分析师从多个数据源访问及整合详细数据,通过更广泛的分析方法获得更准确的结果,具有高度可扩展性、可靠性和易用性。
针对Hadoop,Teradata则选择了合作与收购的方式。通过与Hortonworks的合作,为客户提供Hadoop相关的平台和工具。通过收购Revelytix和Hadapt,进一步完成了对Hadoop的整合。
“未来在Teradata的统一数据架构中,Hadoop将主要作为数据获取和整合平台,Aster主要作为数据挖掘和分析平台。”孔宇华表示。
平台、人员、流程:大数据落地三要素
怎样做才能实现大数据的落地?孔宇华给出的答案是:平台、人员和流程。
首先,需要有一个合适易用,并且能够和企业现有平台轻易进行结合;其次,需要内部人员具备一定的技能;最后,流程制度方面,需要结合大数据需求的敏捷项目管理方法,根据业务需求快速让技术人员利用平台提升数据的价值。
企业如何利用现有人员的技能,找出数据里的价值,恰恰是TeradataAster平台能够赋予客户的。孔宇华表示,通过TeradataAster大数据探索平台,企业可以在很短的时间内,利用原有的技能进行大数据分析,让管理者看到大数据背后的真正价值。
目前,Teradata在全球范围内已经积累了大量的成功案例,与超过十个行业的用户进行了合作,从传统的优势行业,如电信、金融、保险,到电商、医疗、制造与零售等,TeradataAster能够对各种场景进行深入分析,并通过丰富的可视化形式进行展现。
据悉,Teradata在中国成立了大数据技术研发团队,主要负责平台、数据库与分析函数的开发。另外,Teradata在中国还拥有优秀的大数据实施团队和实施合作伙伴,能够帮助客户充分呈现其大数据的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12