
大数据时代:数据分析人才成为“独角兽”
当前,随着大数据影响力的广泛深入,全世界已经进入了大数据时代。互联网和智能手机产生的数据“大爆炸”催生了提取和解读海量数据的新工作岗位——“数据科学家”。
《华尔街日报》日前报道称,3年前数据科学家这个职业头衔基本还不存在,如今已成为高科技劳动力市场上最热门的职位之一。
在很多企业,由于有巨量数据需要分析,数据分析员成为一个必须的职位,连一些看上去和数据毫不相关的企业,也需要数据分析员进行数据分析,帮助做出更好的决策。巨大的用人需求之下,数据科学家成了“香饽饽”,一场寻找或培训“数据科学家”的争夺战正在美国掀起。
数据需要大分析,大分析需要新技术,但企业还需要新人才。在大数据时代,数据科学家等分析人才的需求将激增,尽早开始人才储备将是企业稳步发展的优势之一。
数据科学家需要独特的综合技能,但是,目前这方面的人才如此稀缺,以至于他们被称作“独角兽”。《华尔街日报》说,理想的“数据科学家”不仅要拥有传统的市场调研技能,还需要有能力从不同来源的上百万数据碎片中找出规律,再通过这些规律来推断消费者行为,找准消费行为的触发点并写出相关的统计模型。例如,在某电子商务网站,一名生物统计学博士过去几年里通过挖掘医疗记录来研究乳腺癌的初期征兆,现在他为网站编写统计模型,推断人们在该网站上用什么词条来搜索自己在大街上看到的时尚新品。在一家移动支付初创公司,一位编写统计模型、研究人们政治信仰如何变化的认知心理学博士,现在专门研究人们的行为模式,从而判断哪些零售商更有可能遇到顾客要求退货。
以下数字可以说明数据人才有多稀缺。招聘者说,一个拥有博士学位的数据科学家的起薪通常是六位数,工作两年后,就可以轻松赚到20万至30万美元的年薪。在美国职业社交网站领英网(LinkedIn),有3.6万个数据科学家的职位虚位以待。另一家网站的数据显示,去年底有6000家公司正在招聘数据方面的人才。
看到市场对数据人才的追求日益激烈,很多大学开始专门开设数据分析类专业。据悉,过去一年里,至少有六所美国大学,包括弗吉尼亚大学、哥伦比亚大学、俄亥俄州立大学等开设或宣布计划开设数据科学方面的硕士研究生培养项目。例如,南加州大学马歇尔商学院就专门开设了商业数据分析的硕士项目。该项目介绍的第一句话就是:商业数据分析是现在全美增长最迅速的领域。
分析人士称,大数据革命将深刻影响人们的工作、生活和思维。“数据,已经渗透到当今每一个行业和业务职能领域,”全球知名咨询公司麦肯锡指出,大数据是“创新、竞争和生产率的新边疆”,具有变革性影响,是数字时代的生产要素,是获取竞争优势的一个源泉。
在大数据时代下,大数据人才的重要性显而易见,毫无疑问,大数据的重要价值正日益凸显,数据分析将成为21世纪的一个“金饭碗”,当然,大数据人才的培养,并不是一蹴而就,正所谓“十年树木,百年树人”,培养数据分析人才,需要一段漫长的时间。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14