京公网安备 11010802034615号
经营许可证编号:京B2-20210330
做大数据时代的数据可视化高手
生存者总是在不断寻找可以发展自我、体现价值的途径,总是在寻求更高报酬的工作和职业。然而什么报酬最高,什么样的职业最有挑战,自然是新诞生且在摸索阶段的行业,比如数据可视化。数据可视化是大数据时代特有的行业,这个行业的人才国内并不多,需求却非常多。高薪却招不到人才的问题也让企业非常苦恼。而求职者要想成为大数据时代的数据可视化高手,就要有专业、有技术、有知识、有实践。那么,具体该怎么做呢?
业内人士认为,要想成为大数据时代的数据可视化高手,首先要对专业知识进行了解,无论是数据可视化、大数据还是其他的基础信息,都需要一一掌握,只有在此基础上,才有可能成为数据可视化人才。另外,专业人士认为,尽可能快的去了解这个行业,是从业者非常明智的选择。
现在,越来越多的公司开始依靠数据做决策,而数据计算和读写的能力其实是一样的,要想保住饭碗,就要掌握关键的技能,如果你本身就非常讨厌数据,那么,你必然不会去研究数据,自然就不可能在这条道路上走的更远。
尽管现在,企业在这方面还处于起步阶段,但是并不代表企业不在乎不重视。实际上,百分之八十的企业在了解大数据之后,都纷纷高薪招聘,但是真正能招到高手的很少,为什么?因为国内在这方面的人才非常少。而在这种前提下,公司的员工就会迎难而上,很多员工都已经从单一的行业跳入混合型员工当中,不仅会自己的项目专业,更对其他专业知识了解不少。
比如,业务人员在工作中,除了销售技巧需要掌握之外,还需要了解各种数据图表,这些图表也许简单,但是却能帮助他们更好的分析客户幷拿下客户,为企业带来效益。而以往所用的方法大多很简单,也存在局限性,不具备交互的性能,因而在分析上也存在一些弊端。然而数据可视化的关键点,恰恰就在数据交互上,帮助企业员工更好的了解分析数据。
除此之外,业内人员还认为,想要做数据可视化的高手,不仅要知道其基础知识,更要掌握设计、数理统计,了解听众,与数据为伴,这样才能成为真正的数据可视化高手。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04