京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在实际数据处理分析中。经常会碰到要根据Excel多个条件进行数据处理分析的情况,例如:某个客户在某个账龄区间的应收账款是多少。某个时间段内每个产品的销售额是多少,每个分公司在每个城市销售每个产品的销售额是多少,等等,都是多条件数据处理问题。
对于各种条件下的数据处理分析问题。需要联合使用IF函数、AND函数和OR函数进行判断。不过,由于Excel对函数的嵌套层敬有限制。因此在很多情况下无法用一个公式来解决问题。而在公式中合理使用条件表达式就可以克服嵌套函数的缺点,也使得公式的结构和逻辑更加清楚。
条件表达式就是根据指定的条件准则对两个项目进行比较。得到要么是TRUE要么是FAISE的判定值。逻辑值TRUE和FALSE分别以1和O来代表,在公式中逻辑值TRUE和FALSE分别以1和0来参与运算。
当只对两个项目(常数、公式、单元格引用、函数等)进行比较时。利用简单的比较运算符就可以建立一个简单的条件表达式。例如,下面的公式都是简单的条件表达式,它们对两个项目进行比较。这些条件表达式都是返回逻辑值TRUE或FALSE。
=A1>B1
=A1<>(C1-200)
=A1=“彩电”
=SUM(A1:A10)>=2000
逻辑运算符是条件表达式中逻辑关系的最基本元素,例如,在表达式“=A1>B1”中。大于号“>”就是一个逻辑运算符,它用来比较单元格A1和B1的数据大小关系。
在实际工作中,还会经常使用更为复杂的条件表达式。以完成更为复杂的任务。可以将两个以上的条件表达式组合在一起,例如,使用AND函数或OR函数来构造复杂的条件表达式,或者使用乘号(*)或加号(+)构成更加复杂的条件表达式。
AND函数与乘号(*)的功能是一样的,它们都是构建多个条件的“与”关系。也就是这些条件必须同时满足。
OR函数和加号(+)的功能也是一样的,它们都是构建多个条件的“或”关系,也就是这些条件只要有一个满足即可。
下面的两个公式就是分别使用AND函敛和乘号(*)构造的条件表达式。它们的结果是一样的。
=IF(AND(A1>=100,A1(1000),0.9,O.8)*B1
=IF((AI>=100)*(A1<1000),0.9,0.8)*B1
下面的两个公式就是分别使用OR函数和加号(+)构造的条件表达式,它们的结果是一样的。
=IF(OR(A1=“彩电”,A1=”冰箱”)。O.9,0.8)*B1
=IF((A1=“彩电”)+(A1=“冰箱”),0.9,0.8)*B1
以上节案例的数据为例。若要汇总计算各个大区自营和加盟店铺的各项数据。其汇总表格如图1所示。
图1
首先批量定义名称。然后在相关单元格中输入下面的计算公式。并向下复制。计算结果如图2所示。
图2
单元格B3:=SUMPRODUCT((大区=$A3)*(性质=B$2)*本月指标):
单元格C3:=SUMPRODUCT((大区=$A3)*(性质=C$2)*本月指标);
单元格D3:=SUMPRODUCT((大区=$A3)*(性质=D$2)*实际销售金额);
单元格E3:=SUMPRODUCT((大区=$A3)*(性质=E$2)*实际销售金额);
单元格J3:=SUMPRODUCT((大区=$A3)*(性质=J$2)*销售成本);
单元格K3:=SUMPRODUCT((大区=$A3)*(性质=K$2)*销售成本)。
说明:不论是Excel 2007还是Excel 2003,上述计算公式都是可以使用的。如果使用的是Excel 2007,对于这样的多个条件必须同时满足的求和问题,还可以使用SUMIFS函数来解决,有关单元格的计算公式如下:
单元格B3:=SUMIFS(本月指标。大区。$A3,性质,B$2);
单元格c3:=SUMIFS(本月指标。大区,$A3,性质。c$2);
单元格D3:=SUMIFS(实际销售金顿,大区,$A3,性质,DS2);
单元格E3:=SUMlFS(实际销售金额,大区。$A3,性质,ES2);
单元格J3:=SUMIFS(销售成本。大区,$A3,性质。J$2):
单元格K3:=SUMIFS(销售成本,大区,$A3,性质,K$2)。
Excel多个条件进行数据处理分析对我们来说用的比较多,特别对我们的企业帮助也很大,如果不学这节,我想您还在那里用计算器一个一个的算了,Excel的数据分析能让我们提高工作效率,让工作更简单。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05