
什么是因子分析
这节我们要说的是:什么是因子分析?我们依旧接着前面的二手车案例来学习回归分析。
因子分析是定量分析哪个因子对目标变量(被说明变量)产生了多大影响,因此需要求影响度。求混台模型(定量数据和定性数据混合的模型)影响度的方法如下所示。
定基数据(回归分析的说明变量数据):t值
定性数据(数量化理论I的因素·项目数据):t值范围
因子分析,首先,根据第一次回归分析的结果,对上节表3进行因子分析。由于是定性数据。因此需要求解t值区域’。
“AC(空调)”的影响度=O.51-0=0.5l
“TV导航”的影响度=0-(-0.87)=0.87
“导航”的影响度=1.69-0=1.69
“SR”的影响度=2.01-0=2.01
“天窗”的影响度=O-(-o.99)=0.99
“空气囊”的影响度=3.15-0=3.15
“LD”的影响度=5.53-0=5.53
“TV”的影响度=O-(-0.59)=0.59
“AW”的影响度=6.01-0=6.01
同样地,根据第二次回归分析的结果,求影响度。“行驶距离”、 “车检”、“评分”是定量数据,所以t值就是影响度。
“颜色”的影响度=17.64-0=17.64
“拍卖会地点”的影响度=3.OO-0=3.00
“行驶距离”的影响度=-5.47
“车检剩余有效月数”的影响度4.56
“评分”的影响度=5.17
表1统计了所有因子的影响度。
表1
根据表1制作柱形图,如图1所示。
图1
从图1可知,“颜色”、 “AW”、 “LD”、 “行驶距离”、 “评分”、 “车检剩余有效月数”的影响度数值较大。比较各个因子的影响度绝对值,数值越大,对二手车价格的影响越强。当影响度是负数时(如行驶距离),是负因子,数值越大,目标变量的数值(如二手车价格)越小。
根据Excel回归分析的限制条件将回归自由度设为16
为了满足Excel回归分析的限制条件“回归自由度的最大上限是16”,分两次进行回归分析。从分析结果中抽取影响度较大的因子进行回归分析。这里从上节表1和表2中抽取影响度较大的因子,将回归自由度限制在16以内。
回归自由度是指回归分析时说明变量的个数,即从各项定性数据中分别删除一列项目之后的说明变量个数。
把项目数量控制在16个以内,抽取出具有较大影响度的因子是“LD”、“AW”、“空气囊”、“颜色”、“拍卖会地点”、“行驶距离”、“车检剩余有效月数”、。评分”等8个因子(表2)。
表2
从表2的各个项目中分别删除一列项目(表3)。
表3
接下来,用表3进行回归分析。操作步骤如下:
①从Exccl的菜单栏中,选择“工具”一“数据分析”。
②在弹出的“数据分析”对话框中,选择“回归”,单击“确定”(图2)。
图2
③在弹出的“回归分析”对话框中,点击“Y值输入范围”的文本框。选择“金额”这一列,包含项目名称。接着,点击“X值输入范围”的文本框,选择从“有LD”到“评分”的范围,包含项目名称。选择“标志”后,点击“确定”(图3)。
图3
回归分析结果,如表4所示。
表4
这节讲的什么是因子,内容比较多,因为此节课程和上节是相联系的,所以这节有引用上节的表,还有需要大家注意的是教程的图片有表和图的区分,不要让这点把大家弄混了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11