京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言外部数据录入与格式修改
在使用R语言时出现的一些错误常常与数据的录入方式与格式有关,也有些错误是与对象的类型有关,本文小编为大家介绍读取外部数据的一些常用的方法以及对象类型的判断与转换。
拿到数据,首先了解我们的工作空间和工作路径
工作空间
ls()列出工作空间中的对象
rm()删除工作空间中的对象
rm(list=ls())删除空间中所有对象
save.image()保存工作镜像
sink()将运行结果保存到指定文件中
getwd()显示当前工作文件夹
setwd()设定工作文件夹
了解工作路径
1查看当前R工作的空间目录 getwd()
2将R工作的路径设置为d:/data/ setwd(“d:/data”)
第一种方式:读取外部数据
1 最为常用的数据读取方式是用read.table()函数或read.csv()函数读取外部txt或csv格式的文件。其中:
txt文件,制表符间隔
csv文件,逗号间隔
2 一些R程序包(如foreign)也提供了直接读取Excel, SAS, dbf, Matlab, spss, systat,Minitab文件的函数。
read.table()的使用
例:test.data<-read.table("D:/R/test2.txt",header=T)#header=T表示将数据的第一行作为标题。
read.table(file=file.choose(),header=T)#可以弹出对话框,提示选择文件
第二种方式 从外部读取数据
数据量较大时用read.table函数从外部txt文件读取
第1步将Excel中的数据另存为.txt格式(制表符间隔)或.csv格式。
第2步用read.table()或read.csv()函数将数据读入R工作空间,并赋值给一个对象。
有时需要对读入的数据进行操作,将某一向量转换成矩阵,如条件筛选,此时将遇到向量、矩阵和数据框的生成、条件筛选等。
四种类型的向量
字符型
character<-c("China", "Korea", "Japan","UK", "USA", "France", "India", "Russia")
数值型
numeric<-c(1, 3, 6, 7, 3, 8, 6, 4)
逻辑型
logical<-c(T, F, T, F, T, F, F, T)
复数型略
对象的类型的判断
对象类型判断#返回值为TRUE或FALSE
mode()
class()
is.numeric()
is.logical()
is.charactor()
is.data.frame()
对象类型转换
as.numeric()#转换为数值型
as.logical()
as.charactor()
as.matrix()
as.dataframe()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12