
R语言外部数据录入与格式修改
在使用R语言时出现的一些错误常常与数据的录入方式与格式有关,也有些错误是与对象的类型有关,本文小编为大家介绍读取外部数据的一些常用的方法以及对象类型的判断与转换。
拿到数据,首先了解我们的工作空间和工作路径
工作空间
ls()列出工作空间中的对象
rm()删除工作空间中的对象
rm(list=ls())删除空间中所有对象
save.image()保存工作镜像
sink()将运行结果保存到指定文件中
getwd()显示当前工作文件夹
setwd()设定工作文件夹
了解工作路径
1查看当前R工作的空间目录 getwd()
2将R工作的路径设置为d:/data/ setwd(“d:/data”)
第一种方式:读取外部数据
1 最为常用的数据读取方式是用read.table()函数或read.csv()函数读取外部txt或csv格式的文件。其中:
txt文件,制表符间隔
csv文件,逗号间隔
2 一些R程序包(如foreign)也提供了直接读取Excel, SAS, dbf, Matlab, spss, systat,Minitab文件的函数。
read.table()的使用
例:test.data<-read.table("D:/R/test2.txt",header=T)#header=T表示将数据的第一行作为标题。
read.table(file=file.choose(),header=T)#可以弹出对话框,提示选择文件
第二种方式 从外部读取数据
数据量较大时用read.table函数从外部txt文件读取
第1步将Excel中的数据另存为.txt格式(制表符间隔)或.csv格式。
第2步用read.table()或read.csv()函数将数据读入R工作空间,并赋值给一个对象。
有时需要对读入的数据进行操作,将某一向量转换成矩阵,如条件筛选,此时将遇到向量、矩阵和数据框的生成、条件筛选等。
四种类型的向量
字符型
character<-c("China", "Korea", "Japan","UK", "USA", "France", "India", "Russia")
数值型
numeric<-c(1, 3, 6, 7, 3, 8, 6, 4)
逻辑型
logical<-c(T, F, T, F, T, F, F, T)
复数型略
对象的类型的判断
对象类型判断#返回值为TRUE或FALSE
mode()
class()
is.numeric()
is.logical()
is.charactor()
is.data.frame()
对象类型转换
as.numeric()#转换为数值型
as.logical()
as.charactor()
as.matrix()
as.dataframe()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10