
R语言外部数据录入与格式修改
在使用R语言时出现的一些错误常常与数据的录入方式与格式有关,也有些错误是与对象的类型有关,本文小编为大家介绍读取外部数据的一些常用的方法以及对象类型的判断与转换。
拿到数据,首先了解我们的工作空间和工作路径
工作空间
ls()列出工作空间中的对象
rm()删除工作空间中的对象
rm(list=ls())删除空间中所有对象
save.image()保存工作镜像
sink()将运行结果保存到指定文件中
getwd()显示当前工作文件夹
setwd()设定工作文件夹
了解工作路径
1查看当前R工作的空间目录 getwd()
2将R工作的路径设置为d:/data/ setwd(“d:/data”)
第一种方式:读取外部数据
1 最为常用的数据读取方式是用read.table()函数或read.csv()函数读取外部txt或csv格式的文件。其中:
txt文件,制表符间隔
csv文件,逗号间隔
2 一些R程序包(如foreign)也提供了直接读取Excel, SAS, dbf, Matlab, spss, systat,Minitab文件的函数。
read.table()的使用
例:test.data<-read.table("D:/R/test2.txt",header=T)#header=T表示将数据的第一行作为标题。
read.table(file=file.choose(),header=T)#可以弹出对话框,提示选择文件
第二种方式 从外部读取数据
数据量较大时用read.table函数从外部txt文件读取
第1步将Excel中的数据另存为.txt格式(制表符间隔)或.csv格式。
第2步用read.table()或read.csv()函数将数据读入R工作空间,并赋值给一个对象。
有时需要对读入的数据进行操作,将某一向量转换成矩阵,如条件筛选,此时将遇到向量、矩阵和数据框的生成、条件筛选等。
四种类型的向量
字符型
character<-c("China", "Korea", "Japan","UK", "USA", "France", "India", "Russia")
数值型
numeric<-c(1, 3, 6, 7, 3, 8, 6, 4)
逻辑型
logical<-c(T, F, T, F, T, F, F, T)
复数型略
对象的类型的判断
对象类型判断#返回值为TRUE或FALSE
mode()
class()
is.numeric()
is.logical()
is.charactor()
is.data.frame()
对象类型转换
as.numeric()#转换为数值型
as.logical()
as.charactor()
as.matrix()
as.dataframe()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08