
大数据发展的5条趋势
近几年,大数据已经从大公司独有的流行词和概念变成了驱动我们数字生活发展的动力。下面是未来大数据的处理和发展的五个趋势。
1.数据科学越来越大众化
随着像Coursera、Udacity和Edx等这些和数据分析相关的网络教育平台的流行,越来越多的人不用花一分钱便可以学到所有的知识,从基础的统计学知识到自然语言处理和机器学习。除了这个,Oxdata化简和集成了R语言后推出的分析产品,Quid正在做的具有机器学习和人工智能概念的工具也设计了傻瓜式的使用界面和形象具体的用户展示方法。更有像Kaggle这样的公司推出了关于预测模型的众包平台。所以大数据的处理的趋势之一便是像Datahero,Infogram和Statwing他们一样,把数据分析变得易用,大众。
2.Hadoop对MapReduce的依赖越来越小
Hadoop平台只为MapReduce服务的时代从Hadoop的2.0版本开始正式结束了。新版本支持的产品和服务将会和Cloudera的Impala一样用一个SQL 查询引擎,或者其他的方法来替代MapReduce。HBase NoSQL数据库就是Hadoop离开MapReduce约束后的一个很好的例子。 大型的网络公司,像Facebook、eBay等都已经用HBase去处理事务型的应用了。
3.大数据越来越多的被用到了我们身边的应用中
首先是大数据应用对我们的开发者的要求变低了,有时候开发大数据应用就像在你的应用的代码中加入几行,或者像是写一段儿脚本一样。其次,大数据的应用范围也得到了拓展,用户习惯分析,网络安全,人工智能,售后服务等等都可以通过将大数据处理做成产品或者应用而实现。现在的大数据技术已经被带入了许多网络和手机的应用中,从购物推荐到找到和自己有关联的人等等。
4.机器学习无处不在
很容易就可以看到机器学习越来越流行,从我们身边的小应用Prismatic、Summly、Trifacta、CloudFlare、Twitter、Google、Facebook、Bidgely、Healthrageous、Predilytics、BloomReach、DataPop、Gravity……如今很难想象一个没有机器学习技术的科技公司可以生存。Heck,甚至是微软都在机器学习上下了很大赌注它将成为一个重要的收入来源。
5.手机将成为人工智能的数据来源
我们的手机和手机中的应用目前可能是最大的私人信息来源。通过机器学习,语音识别和其他一些技术,这些应用可以知道我们去哪儿,我们的朋友都是谁,我们的日历上都有哪些提醒,我们上网都浏览什么。通过新一代的私人助理应用(Siri,Saga和Google Now等)我们的手机更能够理解我们的言论,知道我们经常出入的地方,我们平时吃什么,我们在家、工作和郊游的时间等等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08