
大数据发展的5条趋势
近几年,大数据已经从大公司独有的流行词和概念变成了驱动我们数字生活发展的动力。下面是未来大数据的处理和发展的五个趋势。
1.数据科学越来越大众化
随着像Coursera、Udacity和Edx等这些和数据分析相关的网络教育平台的流行,越来越多的人不用花一分钱便可以学到所有的知识,从基础的统计学知识到自然语言处理和机器学习。除了这个,Oxdata化简和集成了R语言后推出的分析产品,Quid正在做的具有机器学习和人工智能概念的工具也设计了傻瓜式的使用界面和形象具体的用户展示方法。更有像Kaggle这样的公司推出了关于预测模型的众包平台。所以大数据的处理的趋势之一便是像Datahero,Infogram和Statwing他们一样,把数据分析变得易用,大众。
2.Hadoop对MapReduce的依赖越来越小
Hadoop平台只为MapReduce服务的时代从Hadoop的2.0版本开始正式结束了。新版本支持的产品和服务将会和Cloudera的Impala一样用一个SQL 查询引擎,或者其他的方法来替代MapReduce。HBase NoSQL数据库就是Hadoop离开MapReduce约束后的一个很好的例子。 大型的网络公司,像Facebook、eBay等都已经用HBase去处理事务型的应用了。
3.大数据越来越多的被用到了我们身边的应用中
首先是大数据应用对我们的开发者的要求变低了,有时候开发大数据应用就像在你的应用的代码中加入几行,或者像是写一段儿脚本一样。其次,大数据的应用范围也得到了拓展,用户习惯分析,网络安全,人工智能,售后服务等等都可以通过将大数据处理做成产品或者应用而实现。现在的大数据技术已经被带入了许多网络和手机的应用中,从购物推荐到找到和自己有关联的人等等。
4.机器学习无处不在
很容易就可以看到机器学习越来越流行,从我们身边的小应用Prismatic、Summly、Trifacta、CloudFlare、Twitter、Google、Facebook、Bidgely、Healthrageous、Predilytics、BloomReach、DataPop、Gravity……如今很难想象一个没有机器学习技术的科技公司可以生存。Heck,甚至是微软都在机器学习上下了很大赌注它将成为一个重要的收入来源。
5.手机将成为人工智能的数据来源
我们的手机和手机中的应用目前可能是最大的私人信息来源。通过机器学习,语音识别和其他一些技术,这些应用可以知道我们去哪儿,我们的朋友都是谁,我们的日历上都有哪些提醒,我们上网都浏览什么。通过新一代的私人助理应用(Siri,Saga和Google Now等)我们的手机更能够理解我们的言论,知道我们经常出入的地方,我们平时吃什么,我们在家、工作和郊游的时间等等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11