
玩转大数据,你需要了解这8种项目类型!
在过去的 12 个月里,笔者一直在大数据的战壕里挖掘。好吧,其实大部分时间我只是坐在比我更聪明的人旁边,看他们怎么在战壕里挖掘数据,再把所做的事情进行简化以上报给管理层。
很少有真正独具一格的 IT 项目,那些听起来比较特别的项目最终也只是大同小异。不过你们今天有眼福了,因为我决定出来冒个泡儿,跟大家分享一下过去 12 个月里接触到的8大项目类型。
那些做电子商务的公司想当然地认为,装几个工具就能掌握网页访客从销售到付款的成交情况。但是很多公司处理的数据集远远不止网页成交率,而且这些数据集主要来自经销商。
每个经销商提供格式各异的不同数据集。当然,从根本上说,这是一个带有BI/可视化前端的核心ETL/数据整合项目。但是,对许多公司而言,要真正了解交易的生命周期(从开始、进展到结束)比想象中要困难。你需要整合大量的 CRM 数据、网站分析数据和财务数据,最后才能肯定地说:“是的,PPC(点击付费广告)带来了交易,但是40%的客户连第一笔交易都未能成功走到付款,那么……”
很多公司都想知道你在做什么,然后再根据你的活动情况向你推销产品。例如,你手机上可能装了一个提供遥测数据的 app,这样公司就会知道你在商场的哪个位置。凭借这些大数据,他们就能预测你在任意时刻的购买需求。
营销人员做事讲求效益,他们想知道具体要做哪些事情,以及这些事情对KPI有何影响。从本质上说,这又是一个 BI 项目,而且往往涉及到大量的变更数据捕获(CDC)和 ETL 数据整合工作。他们测量的实际KPI变化很大,有时还涉及到 Kylin 或 Greenplum 等工具中的数据库。至于其他情况,可能属于下一个类别——社交媒体。
通常,公众会在公开或半公开的社交网络上谈论你(或你的公司)。在这些地方你可以获取很多有用的信息,比如大家怎么看待你的品牌,你的营销活动是否有成效。既然美国地震勘探局可以通过 Twitter 探测到地震和震级,那么你也可以通过这样的平台了解刚推出的广告活动效果如何。随着越来越多的专业社交平台出现,对于某些垂直行业而言,其数据采集范围远远不止 Twitter 和 Facebook。
无论是为了入侵检测还是应对安全审计,你都需要捕获并收集日志文件并使其可检索。在这一领域,Splunk 无疑大赚了一笔。当然,在大数据中还有其他更灵活的选择。
现在已经不是 Teradata 独统天下的时代了,大数据正在从边缘向核心发展,而且 Apache Kylin 的数据库已对所有人开放。得益于 Impala、HAWQ 和 Greenplum,MPP 分布式系统的地位也更加重要。那些价格昂贵、功能单一而且还不能兼容其他数据分析的工具,其发展空间越来越小——更别说是那些只能依靠某单一供应商的私有云。
ETL (Extract-Transform-Load)可能依旧是如今最常见的Hadoop工作负载——而且我敢说,ETL 是适用于 Spark 的最常见的非流式工作负载。顺便提一下,现在已经有上百个创业公司冒出来说自己能够处理这种任务了。
不管是电网、制造业、水泵,还是老司机开的车,都在向我们传递信息。这些信息都需要捕获。甚至有些人已经弄清了该如何处理这些数据。但是,及时捕获数据才是最重要的一步,因为很多人都觉得从技术上来说捕获数据并不那么容易。
此外,笔者还经常督促大家在大数据项目初期就要考虑数据分析问题。为什么呢?因为预先设计并确定好数据流的大小,远比数据已经准备好时再重新考虑整体布局要容易得多。但是有时候还是得细细咀嚼,做最好的打算。
近一年来,笔者见过不少其他项目类型,但是大多数用例都属于以上八种之一。不知各位老司机是否还有补充?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08