
大数据时代 的应急管理变革
当前,大数据浪潮汹涌澎湃。大数据所具有的大量(volume)、高速(ve locity)、多样(variety)和真实(ve racity)的特性正在推动原有社会生产生活模式的重大变革。在应急管理领域,大数据技术的发展至少带来两个方面的革命性变化。
一方面,大数据的出现改变了突发事件的发生、发展和演化的时空模式,加深了突发事件的不确定性。数据关联和信息联通扩大了传统突发事件的影响范围,数据的高速传输也可能使某些负面信息通过互联网瞬间引爆网络群体性事件。海量个性化数据的存储和传输过程中的安全问题则孕育了超乎想象的全新风险。
另一方面,大数据又为可测量、可追踪和精细化的应急管理提供基本信息和管理工具。大数据技术可将这些纷繁复杂的多源异构数据处理成具有决策价值的有效信息。传统管理模式下,应急决策大多是依据个人经验的直觉决策(heuristic decision),而大数据技术的应用使得高度不确定性和高度时间压力下的分析决策(analytical decision)成为可能。
这两个方面的变化是相辅相成、具有逻辑关联的,前者是应急管理对象的变化,后者是应急管理方式的变化,正是由于大数据时代突发事件的形式和规律都在不断发生变化,因此适应大数据发展的应急管理方式变革势在必行。
综观世界各国应急管理的最新进展,大数据技术的应用大致体现在以下五个方面。
大数据技术在突发事件监测预警领域的应用。著名的大数据研究者迈尔·舍恩伯格和库克耶在其畅销著作《大数据时代:生活、工作与思维的大变革》中指出,“大数据的核心就是预测,是把数学算法运用到海量的数据上来预测事情发生的可能性”。并描述了一个运用大数据技术预测突发公共卫生事件的经典案例:谷歌公司通过保存和分析人们的搜索指令准确地预测了2009年甲型h1N1流感的爆发,比美国疾病预防与控制中心(CDC)依靠传统方法的预测提前了两周,为有效控制流行病传播提供了宝贵时间。美国政府在国家安全战略中引入大数据技术,用于对恐怖主义活动、黑客攻击、公共卫生事件、舆情危机等进行监测和预警。
基于大数据技术构建的辅助决策系统。危机情景下的决策始终是应急管理领域的一个重大挑战,危机决策的挑战来自于信息不完备、时间压力大等客观条件的约束。大数据技术使得基于所有数据而不是样本数据的决策成为可能。以美国为代表的发达国家开始探索基于大数据技术的辅助决策系统。美国国土安全部从2012年开始运行了第一个跨部门大数据应用试点项目——“海王星”(Neptune)和“地狱犬”(Cerberus),数据库以完全不同于国土安全部自2002年沿袭至今的方式进行了重新组织,计划将不同来源的未经分类的信息汇聚成一个“数据湖”,对海量数据的综合分析成为国家安全决策的重要参考。
大数据技术在城市管理和社会管理领域的运用。大数据将兴起于2008年的“智慧地球”和“智慧城市”建设推进到全新的阶段。城市管理的一个重要方面就是确保城市公共安全。“智慧城市”运用信息和通信技术手段感测、分析、整合城市运行核心系统的各项关键信息,城市系统的突发事件,特别是城市生命线、基础设施、重点地区的突发事件都在“智慧城市”系统的监测之中。而以“网格化管理”为特征的新型社会管理模式也通过监控录像、社区服务信息等途径不断积累大数据,这些数据对于掌握城市和社会的脆弱环节,控制和消除风险因素起到重要作用。
大数据技术对危机中个体行为模式的研究和应用。大数据时代中,由于人的各种行为都可以数据化,因此通过大数据技术分析危机中个体行为模式构筑了应急管理领域中的一个政策基础。大数据技术通过分析单个网民的传播模式研究了舆情热点事件的演化过程,大数据技术通过分析大量个体的言论和行为从而预测群体性事件发生的可能性,大数据技术通过分析人们接受各类灾害(如暴雨、飓风、地震等)的预警信息之后的行为反应以设计更加有效的风险沟通策略,大数据技术追踪个体在灾害中的逃生和自救行为,从而提升应急疏散和第一响应的能力。
大数据技术在应急资源配置中的管理。应急管理是在危机情景下组织应急人员、调配应急物资以缓解和消除危机负面影响的过程。借助于大数据技术,人员流动和物资流动都可以转化为各种形式的大数据,如通过通讯基站可以快速确定通过手机等通讯设备发出应急信号的人员位置,而急救车、消防车等应急设备的运动轨迹可以通过GPS进行定位和追踪。通过对这些数据集的分析可以针对灾害发生的时空规律对应急资源进行优化配置,对危机情景下应急物资的调运进行最优的线路设计。大数据技术使得应急资源的布局和运用更加精准、高效。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28