京公网安备 11010802034615号
经营许可证编号:京B2-20210330
传统零售企业如何受益于数据分析
线下企业只要能够利用好一些线下数据, 如门禁数据, 视频监控数据, POS数据等, 一样也可以通过数据分析来提高运营效率或者减少运营成本。
我们在《七问大数据:企业真的准备好了》一文中提到:“其实, 中小企业也应该认真考虑他们的大数据战略了。 如果他们有网站, 他们也能够产生大量的数据。 即使没有网站, 其实,每天摄像头里产生的数据,如果能利用好, 也有足够的分析价值。”
传统企业能否像电子商务网站一样对实体店面的“访客”进行数据采集和分析?答案是肯定的,而且这方面的技术已经趋于成熟。
一提到大数据和数据分析, 人们首先想到的是Google, Facebook,等互联网公司, 或者是亚马逊, 淘宝等电子商务公司。的确, 相对传统的线下企业, 互联网企业和电子商务企业, 在数据的采集, 业务流程的自动化方面, 确实更容易实现数据分析。 不过, 随着更多的传统零售企业越来越开始注重网络。这些零售企业也开始更加重视多渠道的销售策略。 目前来看, 在多渠道的零售企业中, 线上部分的增长率都要高过线下部分。 而往往线上部分的数据分析所带来的效益, 也促使零售企业在线下业务也开始更加重视数据分析的作用,并促成了对传统线下数据的崭新应用。
线上电子商务企业的数据来源很丰富, 他们可以衡量用户的一切行为,包括用户数量, 独立访问用户, 用户回头率, 点击率, 转化率、客单价等等。 甚至不同产品在网页不同位置的点击率和转化率等等。 而传统零售业则不同了, 它们的主要数据来源就是POS机的数据。 主要是各类交易数据。 包括购买品种, 购买数量等等。 而对于用户行为来说,线下零售企业掌握的数据相比线上电子商务网站少得可怜,原因是线下的用户行为都是“模拟”的,无法量化分析。
不过, 如今, 随着一些新技术的采用, 线下零售企业也可以获得比过去丰富的多的用户行为数据。比如, ShopperTrak公司, 就帮助它的零售企业客户进行用户进入店铺路径的监测。 根据公司CEO Jan Davis介绍, 这项技术已经非常成熟了:
有很多零售商通过购买访客流量监控的设备和服务, 已经能把用户转化率从低于10% 提高到50%以上。 如果结合POS数据,有的零售点甚至能够做到接近100%的用户转化率。
而且, 通过对“高峰时段“的分析, 很多零售店可以安排分配店内员工工作时间,或者在不同店面之间进行员工调配。
例如, 有一家店铺, 共有四个门。 原来, 店长认为客户从每个门进出是随机的,平均的。 而通过加装了用户监测系统, 他们发现, 用户从某两个门进的比较多, 而从另外两个门出去的比较多。 因此, 他们根据用户进店的流量重新调整了货品摆放,并且把那两个用户出去比较多的门前增加了结帐出口。
不仅如此, 这个店铺的客户监测统计还帮助店长确定了“强力时段“,即客户进店到转化为购买用户的转化率最高的时段。 店里根据这些, 安排更多的店员, 在“强力时段”前把货架的货尽量摆好, 并尽可能帮助客户从货架拿货。 通过这些措施, 使得这个店的用户转化率和单店销售都比以前大大提高了。
其实, 对于数据分析来说, 并不一定非要互联网企业才可以做。类似这样的线下企业, 只要能够利用好一些线下的数据, 如门禁数据, 视频监控数据, POS数据等。 一样也可以通过数据分析来提高运营效率或者减少运营成本,数据分析其实是无处不在的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15