
大数据与钙行业的“邂逅”
一提到大数据,人们多数会把它和软件企业、互联网公司联系在一起,但是其实在传统行业中,也有不少已经与大数据“激情碰撞”。作为国内传统钙行业登陆新三板的公司,博广热能(831507)就与大数据来了一场“邂逅”。
大数据是如何在博广热能与传统的钙行业融合的?大数据与钙行业的融合怎么实现盈利?作为传统钙行业的一员,博广热能的商业模式如何突围?近日,博广热能董事长宋军保接受了笔者专访,分享了博广热能的大数据战略、商业模式转型等一些引人关注的热点。
大数据战略:
目标降本增效
作为传统行业中少有的引入大数据战略的公司,博广热能的大数据系统已经上线,很快吸引了多家行业内企业的入驻。
宋军保表示,公司今年的大数据系统虽然处在逐步推广的阶段,但是明显已经对公司的产业生产与经营产生了效益,年内市场份额将成倍增长。博广热能的大数据平台未来要把单一生产方面的大数据推广到生产、销售、采购的全产业链,与钙行业有关的数据都融入其中,目前公司也正在积极与各个行业协会进行合作,例如碳酸钙协会、石灰协会等都将进行大数据的深度融合,在协会的数据支持下,公司的数据资源与客户资源就能进一步丰富与完善,尽可能大地实现大数据资源的优势。
宋军保形象地举例,氧化钙一套设备年产量20万吨,销售额7000-8000万之间,把这些数据拿到大数据平台上对每个生产企业进行横向与纵向的分析。横向上,把平台上所有的氧化钙企业之间的优劣势进行数据对比分析,找到一种更加合理的生产工艺与模式,再把这些新的工艺与模式分享给平台上各家企业,这样就实现了平台内的优势互补。在纵向上,分析企业历时性的数据,截取最佳的生产量细致研究原因,加以普及降本增效。
据技术人员的专门核算发现,通过平台大数据分析,最保守计算也能在行业内有效降低5%的成本,也就是说大约能降低40万左右的成本,据统计,全国目前约有1000-2000台智能化环保氧化钙装置,仅通过大数据平台就至少能为全国氧化钙企业降低成本4亿-8亿,这就是大数据平台的价值之一。
商业模式:
商业联盟是未来方向
据悉,目前钙行业一个项目上马投入资金量都十分巨大,有的甚至需要上亿的资金规模,任何一家企业都难以承受如此庞大的持续性投入。
应对这样的境况,宋军保表示,“虽然现在行业中占比最大的还是EPC模式,不过博广热能已经领先一步从EPC转向BOO模式,而且公司还提出了一个全新的商业模式——商业联盟”。
商业联盟由博广热能作为建设方牵头,组织业主、投资者、金融优先级资金以项目为基础,共同成立商业联盟,为业主提供资金、建设、运营、服务等一揽子解决方案;博广热能作为项目建设方和运营方,不仅能节约投资资金还能兼得业绩增长。原来采用BOO的商业模式做项目,一相对投资建设规模小,市场拓展慢,而通过商业联盟的方式,一年能做数个项目,因为在联盟的配套资金中目前就已经有十几亿的资金,以这样的资金规模一年完成几个项目显得十分轻松。
产品更新:
不断创新防止触顶
传统材料行业,经常会发生某一种材料在初兴起之时利润很高,各大企业纷纷上马项目,结果产能过剩,材料淘汰,企业大批亏损甚至倒闭的现象。不过,博广热能却能够在保持业绩不触顶,宋军保认为,这得益于公司在一项业务类别盛极一时之时能够保持清醒,仍然不断更新业务品类,保证企业的持续发展。
宋军保说,“公司不可能固守一个业务,在这一项业务上一家独大地永远下去,因为行业内的更新换代速度很快,需要不断推陈出新,这是企业持续发展的重要来源”。他认为博广热能今年的业绩快速增长仅只是开始,按照目前的形势做预判,未来几年的业绩增长会进一步加快,公司也会不断更新业务品类,诸如推出纳米新材料,脱硫废水等新产品,防止出现业绩触顶的可能。
在具体的产品更新上,宋保军解释,从2016年开始的五年内,公司的纳米碳酸钙国内市场份额力争达到10%以上。五年以后,公司产业重点延伸到钙产业链的后端,开发与钙有关的药品和食品等产业。
节能环保:
颠覆原有观念与模式
目前国内企业上马一项节能环保项目,通常随之而来的就是企业大数据成本的提高,负担加重。而宋军保表示,博广热能将颠覆原有的节能环保观念与模式,即让企业满足节能环保要求,也不给企业“加担子”。
他说,博广热能力图打造的循环生产体系达到三废零排放,没有废渣、废水和废气,不仅实现废物回收,而且将其资源化利用生产高值化产品。目前公司的脱硫废水项目已经实现了转变废物处理方式,从原来的处理废水每吨收取一定费用的BOO模式,转变为不仅不收取废水处理费用,而且将处理后的废水供业主循环使用使用。博广热能则从废水中提取高附加值的物质,例如高品位的硫磺、硫酸铵、硫代硫酸铵等推向市场,在市场销售中盈利,彻底实现变废为宝。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11