
如何让你的数据得到业务方认可?
很多朋友都反映说,在我的公司根本就不重视数据, 数据分析人员的价值根本得不到体现,做的很郁闷。问我:不说数据分析都很受重视吗?很希望去一个数据分析很受重视的公司工作。我说,不受重视是指哪些方面?
“其它部门有数据需求的时候,我们只是做简单的加工,处理,提取数据。”
“做运营活动或者营销活动根本就不怎么看数据,直接就做活动了。”
“有时候,他们要数据直接找技术部门的DBA人员提取数据。”
“业务方开会从来不叫我。”
其时,一个数据分析师(对 数据挖掘、建模,那更是只用在真正重视数据,而且数据量大的时候才会存在)的理想状态,业务部门有什么业务上的问题,会愿意来和你讨论,而你可以从数据上 帮助业务人员,双方之间相互信任,沟通很顺畅。甚至你可以对业务提出自己的观点,而且有时候业务人员很愿意接受你的观点,并按照你的想法去实施。从而让你 很有成就感。
但是如果一个业务部门不重视,很多做数据分析人员就“自暴自弃”。说公司不重视数据,那我就这样的,也不管它的,反正谁要什么数据,我就给他什么样的数据。
It is just a job!
其实这是一个恶性循环,不是吗?
也许是数据分析这个行业(指现在很多公司都有专门的数据分析师或者相关岗位)本来出现的时间不长,很多人都没有真正的意识到他如何让数据发挥最大的 价值。但是大多数人都知道数据是有价值的。特别是互联网公司,有人说一个没有数据分析的互联网公司根本不叫互联网公司。有人说互联网的公司其实就是一个数 据公司。所以很多公司的数据分析人员,常常面对这样情况?
业务部门认为,数据部门根据就没有帮上什么忙?没有提供什么有价值的数据?或者提供的数据有时候不对?没有及时提供数据?
而数据分析师认为,业务部门从来没有主动来与我讨论业务,让我了解业务,我怎么通过数据去帮助数据。最多是我要做活动了,我要干什么了。你给我拉个数据看看,或者帮我做张图,其它你不要管了。
最终二者只会越离越远,那么如何打破这个循环的呢?作为一个分析师,你为什么不去分析为什么会有这样的现状?你连自己的事情都分析不好,还指望帮别人分析什么(开个玩笑)!
为什么会出现这种情况呢?其实数据受不受重视,关键在于能不能产生(体现)“价值”。我认为主要有以下几方面:
1、数据本身是有价值的。一个数据有价值有条件有以下几条
这也是为什么现在数据分析师要求统计学、计算机专业背景,首先你的把数据业务口径转换成数据上统计口径,这需要这二个相关的专业知识。这是做数据的最基础的基础,你连数据的统计不对,不完整,不准备,还谈什么数据分析啊。
2、让管理者(或者使用数据的人)意识到它的价值
在数据分析人员对数据进行正确加工/处理,而能否产生价值更为关键的是,让最终的目标受众(你使用数据/看数据的人)看到它的价值,能帮助业务方解 决问题。能直接从你数据得到解决问题的solution,right?Howtoachieve?只有一条路,沟通!沟通!再沟通!
主动去业务方沟通,去问这些问题,
1、你现在业务发展到什么情况?
2、我们的竞争对手是什么情况?
3、整个外部市场是怎么样的?
4、日常业务你希望看数据,你希望看哪些数据(指标)?分内部数据与外部数据?
5、为什么你看这些指标?而不是其它的?
6、你希望数据更新的频率是?每天/每周/每月?
7、你希望数据的最终展现形式是?
8、目前业务上比较大的困惑在哪?对这些比较大的困惑,我们能不能联合做一些专题分析,我从数据角度,你们从业务出发,来共同解决这个问题。
(沟通的时候谦虚一点,态度好一点,你可是去向别人学习你业务知识的)
有人说,做数据分析是出来卖的。你的数据分析结果(相当你的产品)出来好,你要业务方接受(消费者)它,相信它解决你的问题。这是很有道理的。既然 我们在商业里,不是追求数据分析方法多高深,不是做研究,而是更多能业务方带来帮忙,推动业务的成长,不是吗?这难道不是一个数据分析师的商业价值?
3、数据分析师的背景
很多数据分析都是学统计、计算机出身的,其对自己公司的业务、商业模式、运营模式其实了解的不多,甚至可以说“不懂”。而对业务方来说,做数据的根 据就不懂业务,却拿着数据来对我们业务人员指手画脚,凭什么?(你觉得在这种情况有家会接受吗?不管你会不会接受,反正我是不会接受的。)其实,如果你是 一个在这个行业背景很深的数据分析师,其实业务方是很希望与你沟通的,也许他们与你沟通刚开始不会在数据层面。这里面说明了什么?说明了 数据分析师你一定要去了解业务,熟悉业务。所以相关的业务数据知识结构都没有,何以谈数据?何以得到别人的认同?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13CDA 数据分析师:数字化时代的关键人才 在当今数字化浪潮席卷全球的时代,数据已然成为驱动企业发展、推动行业变革的核心要素。 ...
2025-06-13CDA 数据分析师报考条件全解析 在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst ...
2025-06-13“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23