
如何让你的数据得到业务方认可?
很多朋友都反映说,在我的公司根本就不重视数据, 数据分析人员的价值根本得不到体现,做的很郁闷。问我:不说数据分析都很受重视吗?很希望去一个数据分析很受重视的公司工作。我说,不受重视是指哪些方面?
“其它部门有数据需求的时候,我们只是做简单的加工,处理,提取数据。”
“做运营活动或者营销活动根本就不怎么看数据,直接就做活动了。”
“有时候,他们要数据直接找技术部门的DBA人员提取数据。”
“业务方开会从来不叫我。”
其时,一个数据分析师(对 数据挖掘、建模,那更是只用在真正重视数据,而且数据量大的时候才会存在)的理想状态,业务部门有什么业务上的问题,会愿意来和你讨论,而你可以从数据上 帮助业务人员,双方之间相互信任,沟通很顺畅。甚至你可以对业务提出自己的观点,而且有时候业务人员很愿意接受你的观点,并按照你的想法去实施。从而让你 很有成就感。
但是如果一个业务部门不重视,很多做数据分析人员就“自暴自弃”。说公司不重视数据,那我就这样的,也不管它的,反正谁要什么数据,我就给他什么样的数据。
It is just a job!
其实这是一个恶性循环,不是吗?
也许是数据分析这个行业(指现在很多公司都有专门的数据分析师或者相关岗位)本来出现的时间不长,很多人都没有真正的意识到他如何让数据发挥最大的 价值。但是大多数人都知道数据是有价值的。特别是互联网公司,有人说一个没有数据分析的互联网公司根本不叫互联网公司。有人说互联网的公司其实就是一个数 据公司。所以很多公司的数据分析人员,常常面对这样情况?
业务部门认为,数据部门根据就没有帮上什么忙?没有提供什么有价值的数据?或者提供的数据有时候不对?没有及时提供数据?
而数据分析师认为,业务部门从来没有主动来与我讨论业务,让我了解业务,我怎么通过数据去帮助数据。最多是我要做活动了,我要干什么了。你给我拉个数据看看,或者帮我做张图,其它你不要管了。
最终二者只会越离越远,那么如何打破这个循环的呢?作为一个分析师,你为什么不去分析为什么会有这样的现状?你连自己的事情都分析不好,还指望帮别人分析什么(开个玩笑)!
为什么会出现这种情况呢?其实数据受不受重视,关键在于能不能产生(体现)“价值”。我认为主要有以下几方面:
1、数据本身是有价值的。一个数据有价值有条件有以下几条
这也是为什么现在数据分析师要求统计学、计算机专业背景,首先你的把数据业务口径转换成数据上统计口径,这需要这二个相关的专业知识。这是做数据的最基础的基础,你连数据的统计不对,不完整,不准备,还谈什么数据分析啊。
2、让管理者(或者使用数据的人)意识到它的价值
在数据分析人员对数据进行正确加工/处理,而能否产生价值更为关键的是,让最终的目标受众(你使用数据/看数据的人)看到它的价值,能帮助业务方解 决问题。能直接从你数据得到解决问题的solution,right?Howtoachieve?只有一条路,沟通!沟通!再沟通!
主动去业务方沟通,去问这些问题,
1、你现在业务发展到什么情况?
2、我们的竞争对手是什么情况?
3、整个外部市场是怎么样的?
4、日常业务你希望看数据,你希望看哪些数据(指标)?分内部数据与外部数据?
5、为什么你看这些指标?而不是其它的?
6、你希望数据更新的频率是?每天/每周/每月?
7、你希望数据的最终展现形式是?
8、目前业务上比较大的困惑在哪?对这些比较大的困惑,我们能不能联合做一些专题分析,我从数据角度,你们从业务出发,来共同解决这个问题。
(沟通的时候谦虚一点,态度好一点,你可是去向别人学习你业务知识的)
有人说,做数据分析是出来卖的。你的数据分析结果(相当你的产品)出来好,你要业务方接受(消费者)它,相信它解决你的问题。这是很有道理的。既然 我们在商业里,不是追求数据分析方法多高深,不是做研究,而是更多能业务方带来帮忙,推动业务的成长,不是吗?这难道不是一个数据分析师的商业价值?
3、数据分析师的背景
很多数据分析都是学统计、计算机出身的,其对自己公司的业务、商业模式、运营模式其实了解的不多,甚至可以说“不懂”。而对业务方来说,做数据的根 据就不懂业务,却拿着数据来对我们业务人员指手画脚,凭什么?(你觉得在这种情况有家会接受吗?不管你会不会接受,反正我是不会接受的。)其实,如果你是 一个在这个行业背景很深的数据分析师,其实业务方是很希望与你沟通的,也许他们与你沟通刚开始不会在数据层面。这里面说明了什么?说明了 数据分析师你一定要去了解业务,熟悉业务。所以相关的业务数据知识结构都没有,何以谈数据?何以得到别人的认同?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08