
R语言处理缺失数据的高级方法
主要用到VIM和mice包
install.packages(c("VIM","mice"))
1.处理缺失值的步骤
步骤:
(1)识别缺失数据;
(2)检查导致数据缺失的原因;
(3)删除包含缺失值的实例或用合理的数值代替(插补)缺失值
缺失值数据的分类:
(1)完全随机缺失:若某变量的缺失数据与其他任何观测或未观测变量都不相关,则数据为完全随机缺失(MCAR)。
(2)随机缺失:若某变量上的缺失数据与其他观测变量相关,与它自己的未观测值不相关,则数据为随机缺失(MAR)。
(3)非随机缺失:若缺失数据不属于MCAR或MAR,则数据为非随机缺失(NIMAR)。
2.识别缺失值
NA:代表缺失值;
NaN:代表不可能的值;
Inf:代表正无穷;
-Inf:代表负无穷。
is.na():识别缺失值;
is.nan():识别不可能值;
is.infinite():无穷值。
is.na()、is.nan()和is.infinte()函数的返回值示例
xis.na(x)is.nan(x)is.infinite(x)
x<-NATRUEFALSEFALSE
x<-0/0TRUETRUEFALSE
x<-1/0FALSEFALSETRUE
complete.cases()可用来识别矩阵或数据框中没有缺失值的行,若每行都包含完整的实例,则返回TRUE的逻辑向量,若每行有一个或多个缺失值,则返回FALSE;
3.探索缺失值模式
(1)列表显示缺失值
mice包中的md.pattern()函数可以生成一个以矩阵或数据框形式展示缺失值模式的表格
library(mice)
data(sleep,package="VIM")
md.pattern(sleep)
(2)图形探究缺失数据
VIM包中提供大量能可视化数据集中缺失值模式的函数:aggr()、matrixplot()、scattMiss()
library("VIM")
aggr(sleep,prop=FALSE,numbers=TRUE)
library("VIM")
aggr(sleep,prop=TRUE,numbers=TRUE)#用比例代替了计数
matrixplot()函数可生成展示每个实例数据的图形
matrixplot(sleep)
浅色表示值小,深色表示值大;默认缺失值为红色。
marginplot()函数可生成一幅散点图,在图形边界展示两个变量的缺失值信息。
library("VIM")
marginplot(sleep[c("Gest","Dream")],pch=c(20),col=c("darkgray","red","blue"))
(3)用相关性探索缺失值
影子矩阵:指示变量替代数据集中的数据(1表示缺失,0表示存在),这样生成的矩阵有时称作影子矩阵。
求这些指示变量间和它们与初始(可观测)变量间的相关性,有且于观察哪些变量常一起缺失,以及分析变量“缺失”与其他变量间的关系。
head(sleep)
str(sleep)
x<-as.data.frame(abs(is.na(sleep)))
head(sleep,n=5)
head(x,n=5)
y<-x[which(sd(x)>0)]
cor(y)
cor(sleep,y,use="pairwise.complete.obs")
4.理解缺失值数据的来由和影响
识别缺失数据的数目、分布和模式有两个目的:
(1)分析生成缺失数据的潜在机制;
(2)评价缺失数据对回答实质性问题的影响。
即:
(1)缺失数据的比例有多大?
(2)缺失数据是否集中在少数几个变量上,抑或广泛存在?
(3)缺失是随机产生的吗?
(4)缺失数据间的相关性或与可观测数据间的相关性,是否可以表明产生缺失值的机制呢?
若缺失数据集中在几个相对不太重要的变量上,则可以删除这些变量,然后再进行正常的数据分析;
若有一小部分数据随机分布在整个数据集中(MCAR),则可以分析数据完整的实例,这样仍可得到可靠有效的结果;
若以假定数据是MCAR或MAR,则可以应用多重插补法来获得有铲的结论。
若数据是NMAR,则需要借助专门的方法,收集新数据,或加入一个相对更容易、更有收益的行业。
5.理性处理不完整数据
6.完整实例分析(行删除)
函数complete.cases()、na.omit()可用来存储没有缺失值的数据框或矩阵形式的实例(行):
newdata<-mydata[complete.cases(mydata),]
newdata<-na.omit(mydata)
options(digits=1)
cor(na.omit(sleep))
cor(sleep,use="complete.obs")
fit<-lm(Dream~Span+Gest,data=na.omit(sleep))
summary(fit)
7.多重插补
多重插补(MI)是一种基于重复模拟的处理缺失值的方法。
MI从一个包含缺失值的数据集中生成一组完整的数据集。每个模拟数据集中,缺失数据将使用蒙特卡洛方法来填补。
此时,标准的统计方法便可应用到每个模拟的数据集上,通过组合输出结果给出估计的结果,以及引入缺失值时的置信敬意。
可用到的包Amelia、mice和mi包
mice()函数首先从一个包含缺失数据的数据框开始,然后返回一个包含多个完整数据集的对象。每个完整数据集都是通过对原始数据框中的缺失数据进行插而生成的。
with()函数可依次对每个完整数据集应用统计模型
pool()函数将这些单独的分析结果整合为一组结果。
最终模型的标准误和p值都将准确地反映出由于缺失值和多重插补而产生的不确定性。
基于mice包的分析通常符合以下分析过程:
library(mice)
imp<-mice(mydata,m)
fit<-with(imp,analysis)
pooled<-pool(fit)
summary(pooled)
mydata是一个饮食缺失值的矩阵或数据框;imp是一个包含m个插补数据集的列表对象,同时还含有完成插补过程的信息,默认的m=5analysis是一个表达式对象,用来设定应用于m个插补的统计分析方法。方法包括做线回归模型的lm()函数、做广义线性模型的glm()函数、做广义可加模型的gam()、及做负二项模型的nbrm()函数。fit是一个包含m个单独统计分析结果的列表对象;pooled是一个包含这m个统计分析平均结果的列表对象。</pre><pre name="code" class="plain">library(mice)
data(sleep,package="VIM")
imp<-mice(sleep,seed=1234)
fit<-with(imp,lm(Dream~Span+Gest))
pooled<-pool(fit)
summary(pooled)
impimp$imp$Dream
利用complete()函数可观察m个插补数据集中的任意一个,格式为:complete(imp,action=#)
eg:
dataset3<-complete(imp,action=3)
dataset3
8.处理缺失值的其他方法
(1)成对删除
处理含缺失值的数据集时,成对删除常作为行删除的备选方法使用。对于成对删除,观测只是当它含缺失数据的变量涉及某个特定分析时才会被删除。
cor(sleep,use="pairwise.complete.obs")
虽然成对删除似乎利用了所有可用数据,但实际上每次计算只用了不同的数据集,这将会导致一些扭曲,故建议不要使用该方法。
(2)简单(非随机)插补
简单插补,即用某个值(如均值、中位数或众数)来替换变量中的缺失值。注意,替换是非随机的,这意味着不会引入随机误差(与多重衬托不同)。
简单插补的一个优点是,解决“缺失值问题”时不会减少分析过程中可用的样本量。虽然 简单插补用法简单,但对于非MCAR的数据会产生有偏的结果。若缺失数据的数目非常大,那么简单插补很可能会低估标准差、曲解变量间的相关性,并会生成不正确的统计检验的p值。应尽量避免使用该方法。
常用方法:Sweave和odfWeave。
Sweave包可将R代码及输出嵌入到LaTeX文档中,从而得到 PDF、PostScript和DVI格式的高质量排版报告。
odfWeave包可将R代码及输出嵌入到ODF(Open Documents Format)的文档中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08