
经验分享:如何提高机器学习数据采集的效率
在新的一年里,很多人都在思考如何利用机器学习(ML)算法来提高产品或服务的质量。
PredictionIO公司与许多公司合作,部署他们的第一个ML系统和大数据基础设施。PredictionIO总结了数据收集任务中的一些好的实践,并愿意与你分享这些经验。
如果你正在考虑采用ML,以正确的格式收集正确的数据,将会降低你的数据清理工作以及数据浪费。
要收集所有数据
收集所有数据是非常重要的。除非你真正训练一个预测模型,否则你将很难知道哪个属性哪些信息具有预测价值,并提供最好的结果。 如果一条信息没有收集到,我们就没有办法获取它,并永远地失去它了。存储成本的低廉,也使得你可以收集一切与你的应用程序、产品或服务相关的数据。
这里有两个例子:
在产品推荐中,收集用户标识符、物品(即产品)标识和行为数据包括评分是非常重要的。 其他相关属性,如类别、描述、价格等数据,对于推荐模型的提升也是有用的。隐含的行为,如意见,可能比显性评分更加有用。
在预测泰坦尼克号乘客的生存上,我们凭直觉知道,乘客的年龄、性别等属性和结果是有关联的。 其他属性如船上儿童的数目、车费和客舱可能是也可能不是有用的信息。在你开始建立预测模型之前,你很难知道哪些方面将会对预测最有价值。
存储日志是一种常见的解决方案;他们以后可以提取、转换和加载来训练你的机器学习模型。
每个事件的时间戳
每个事件的时间戳都是很重要的,尤其是对于用户的动作或行为数据来说。时间戳能够阻止我们在构建机器学习模型时出现先窥偏差(Look-ahead Bias)。
PredictionIO提供支持最佳实践的Event Server或“基于事件的风格”收集数据。这意味着一切被视为有时间戳的事件而收集,不管他是一个用户(例如“Sarah Connor”),一件物品(例如“终结者”),或者一个用户对物品的操作(“Sarah Connor查看终结者“)。
举个例子,创建用户Sarah Connor:
注意,entityId我们使用了通用唯一标识符(UUID),而eventTime我们使用ISO 8601的格式。
保持属性一致性
使用一致的属性值。如果性别使用了“Female”,最好往后保持使用相同的符号,而不是以“F”或“female”或“girl”来替代。 当你删除了一项特征,你应该将之从训练集之中排除。你可以清理与该特征相关联的数据并重新导入。 当您添加一个新的特征,回填字段的默认值是重要的。
避免序列化和二进制
在Event Server 中,“属性”区域允许任何形式自由的JSON对象。为了方便,我们可以存储一个转义JSON字符串作为该区域之一。 然而,序列化可能会混淆数据,使之变成一个不可用的点。举例如下:
错误的代码:
正确的代码 :
可能的例外是当序列化大幅降低存储空间时。例如,你可能希望使用Protocol Buffer来存储数据,并把它们作为二进制字符串序列化。 这样做可以节省5倍的存储空间,但它会使你的数据不可解析。更糟糕的是,如果你失去了你的消息定义文件,数据将会永久丢失。 除非你的数据大小有谷歌或亚马逊那样的规模,不然这可能不值得。
查询时间
大型数据集的查询是耗时的工作。PredictionIO Event Server 通过(entityId,entityType)索引数据。 如果你想有效地查询,根据你的需要选择“entityId”和“entityType”。
使用队列服务
建议使用消息队列机制将事件数据传递到Event Store。如果Event Store暂时不可用,消息将驻留在队列中,直到它被处理。 数据不会丢失。
我们希望这篇文章对你有用。如果你有其他的技巧或者其他的问题,请在评论中与我们分享!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27