
大数据可以创造出更高质量的价值
作为最早洞见大数据时代发展趋势的数据科学家之一,舍恩伯格在数博会“数据资产化发展论坛”上发表了《大数据的大价值》主题演讲。舍恩伯格认为,大数据是可以反复使用的资源,人们可以利用大数据创造出更高质量的价值。
舍恩伯格说,如今,数据已经成为了有价值的公司资产、重要的经济投入和新兴商业模式的基石。虽然数据还没有被列入企业的资产负债表,但这只是一个时间问题。人们必须意识到数据价值,并合理加以利用。
什么样的数据可与未来潜在因素发生更加紧密的联系?舍恩伯格认为,关键就在于让数据“说话”,展现出数据之间真正的联系。通过小数据到大数据的累计,可以创造出更高质量价值。就像拍一个人骑马,随着照片数量的增加,画面就会连续起来变成电影那样,小数字增量到大数据也是一个质变。
对于如何利用数据做出决策,舍恩伯格以一个英文学习软件Duolinga为例。这个软件通过数据研究发现,西班牙母语的人学习英文会犯很多错误,所以他们根据反馈的数据又开发出了对西班牙母语人士最好的学习课程。数据帮助Duolinga发现了看问题的新角度,并创造出了比其他产品更优秀的软件,因此,数据能够帮助人们做出更加准确的决策。
舍恩伯格认为,数据产生的价值从过去到现在已经发生了改变,在过去的小数据时代,人们是根据一个问题去搜集回答这个问题的数据,得到针对这个问题的答案,就像找到了水面上的冰山,而忽略了水面以下大部分具有价值的数据。而在未来,数据大部分的价值都藏在水面下,在对数据的重复使用当中,人们可以更多地挖掘出冰山下面的那一部分价值。比如一个来自MIT的初创公司,通过每天搜集10亿项阿里巴巴、亚马逊等电商网的数据,并作出针对通货膨胀比率的预测,2008年9月之前,他们就通过这些数据预测出了经济危机。
舍恩伯格指出,谷歌的无人驾驶车之所以比大众、宝马、奔驰生产的无人汽车效果更好,其原因就在于他们的数据和经验更多。谷歌通过不断地使用和试验,累计了大量的数据来让其系统获得更好地学习,就像人工智能的不断进化也是要依靠试错数据的累积,而这也体现出大数据的价值。
舍恩伯格说,未来当人们意识到大数据的价值后,它将会在一些行业带来颠覆性变革。例如,医疗研究应该将以万计的人、数以万计的数据资料进行接合,才能加速医疗行业发展。现在中国已经有了数据中心、贵阳有了大数据交易所,又有大体量的人口样本,应该有信心将医疗数据投入研究之中,推进医疗发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07