
数据分析师的利器:R语言
近年来,随着大数据浪潮的到来,数据科学快速发展,数据分析师要处理的数据问题越来越复杂,传统的数据分析工具越来越显得力不从心。
R语言作为国外数据分析师常用工具在国外的数据分析师业务中有广泛的应用领域,同时几乎也是国外高校统计专业的必修课,在学术届更是有着独一无二的共识性和应用领域。R语言的处理数据和数据可视化的强大能力,吸引了越来越多的数据分析师投入到R语言的阵营。
横向对比各种数据分析工具,结合数据分析师需要面对的日益复杂的应用场景,数据分析师要提升专业能力和处理数据的能力,选择称手的工具,R语言是一个非常好的选择。
一、R语言是数据分析领域的通用语言
R语言是统计学家发明的工具,早期主要是学术界的统计学家在用,他们将其用在各种不同的领域,包括统计分析,生物信息学,应用数学,计量经济,金融分析,财经分析,人文科学,数据挖掘,人工智能,生物制药,全球地理科学,数据可视化等等。
近年来,随着大数据时代的带来,其他领域的数据分析人员,如互联网数据分析师,IT工程人员,广告数据分析人员等开始认识到R语言的强大能力,越来越多的其他领域的专业人员加入到R语言的使用者队伍。
根据kdnuggets的调查显示,在2012.2013.2014连续三年,R语言都是数据分析、数据挖掘、数据科学领域排名第一的主流语言和工具。
Revolution Analytics的社区总监和新开源解决方案组的领头人支出:“R语言几乎成为了数据科学领域的通用语言。”
网络上更是流传数据分析师鄙视链的戏谑说法:“R>SAS>stata>SPSS>EXCEL,从另外一个方面说明了掌握的工具与所处的行业地位之间的关系,掌握了R语言的数据分析师往往具有更强的数据分析能力和更好的行业地位。
二、R语言是一门编程语言。
(1)R语言是一门编程语言
维基百科中对R语言的定义:一种自有软件编程语言与操作环境,主要用于统计分析、绘图、数据挖掘。
既然R语言是一直编程语言,我们对比其它编程语言,将R语言作为一种编程语言的特性进行对比分析如下:
在这个表格中,我们能看出,R语言作为一种面向对象的高级编程语言,与Java、C++、C、Fortran这些编程语言相比,具有解释型、交互型和动态类型的特点。而后面这3个特点,特别适合数据分析师进行数据分析的业务场景,变量无需事先定义,直接拿来就用,每一步分析都能与系统交互,看到处理的结果,能快速排除错误和逐步深入数据分析业务本身,将重点放在分析解决问题上,数据分析师从繁杂的编程中抽离出来。面向问题而不是强调编程的特点,大大便利了数据分析师的分析业务。
此外,R语言以向量为基本运算对象,这不仅能有效降低代码的冗余度,也显著提升了代码的运算效率。简单的几行代码,不仅能实现其他语言一大段代码的功能,而且运算速度也很快。
(2)R语言不仅仅是一门编程语言,R语言更是一门专业的统计计算语言。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10