京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘系列篇:聚类算法概述
本篇重点介绍聚类算法的原理,应用流程、使用技巧、评估方法、应用案例等。具体的算法细节可以多查阅相关的资料。聚类的主要用途就是客户分群。1.聚类 VS 分类
分类是“监督学习”,事先知道有哪些类别可以分。
聚类是“无监督学习”,事先不知道将要分成哪些类。
举个例子,比如苹果、香蕉、猕猴桃、手机、电话机。
根据特征的不同,我们聚类会分为【苹果、香蕉、猕猴桃】为水果的一类,和【手机、电话机】为数码产品的一类。
而分类的话,就是我们在判断“草莓”的时候,把它归为“水果”一类。
所以通俗的解释就是:分类是从训练集学习对数据的判断能力,再去做未知数据的分类判断;而聚类就是把相似的东西分为一类,它不需要训练数据进行学习。
学术解释:分类是指分析数据库中的一组对象,找出其共同属性。然后根据分类模型,把它们划分为不同的类别。分类数据首先根据训练数据建立分类模型,然后根据这些分类描述分类数据库中的测试数据或产生更恰当的描述。
聚类是指数据库中的数据可以划分为一系列有意义的子集,即类。在同一类别中,个体之间的距离较小,而不同类别上的个体之间的距离偏大。聚类分析通常称为“无监督学习”。
2.聚类的常见应用
我们在实际情况的中的应用会有:
marketing:客户分群
insurance:寻找汽车保险高索赔客户群
urban planning:寻找相同类型的房产
比如你做买家分析、卖家分析时,一定会听到客户分群的概念,用标准分为高价值客户、一般价值客户和潜在用户等,对于不同价值的客户提供不同的营销方案;
还有像在保险公司,那些高索赔的客户是保险公司最care的问题,这个就是影响到保险公司的盈利问题;
还有在做房产的时候,根据房产的地理位置、价格、周边设施等情况聚类热房产区域和冷房产区域。
3.k-means
(1)假定K个clusters(2)目标:寻找紧致的聚类
a.随机初始化clusters
b.分配数据到最近的cluster
c.重复计算clusters
d.repeat直到收敛
优点:局部最优
缺点:对于非凸的cluster有问题
其中K=?
K<=sample size
取决于数据的分布和期望的resolution
AIC,DIC
层次聚类避免了这个问题
4.评估聚类
鲁棒性?
聚类如何,是否过度聚合?
很多时候是取决于聚合后要干什么。
5.case案例
case 1:卖家分群云图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27