
大数据业务应用场景
“将数据转化为洞察”,这是不是很容易?在大数据时代背景下,你可能会认为每个人都在做着同样的事情。如果不幸成为例外,那只能说明你已经落后于时代了。但是,对很多IT负责人来说,大数据仍然是一个全新的领域,不对其过分追求反倒可能是当下合理的选择。
关于大数据的应用在各行各业俯首皆是。比如,零售行业通过将购物偏好和位置信息相结合,为客户提供更加个性化的服务和商品;或者,制造业通过预测分析来提升运维水平。
基于飞行实时数据,发动机制造商对维护时间点和飞行性能进行评估,而后为航空公司提供创新的租赁和服务合约。
超市很早以前就通过天气预报数据来决定冰淇淋和烧烤食物的上架时间。现在,业者开始基于客户忠诚度计划搜集的购物习惯数据,决定在第二天什么时间点提供那些易腐烂的商品。
在这些案例中,无论数据是结构化还是非结构化,分析的最终目的都是相同的:提升销售或降低成本。
但是,如果不在大数据上进行投资,会发生什么情况呢?也许,你很聪明,并且已经知道该在哪里进行投资以获得竞争优势和丰厚利润;或者,机缘巧合,你的成功来自于竞争对手的失误。
如果属于第一种情况,本文对你毫无意义,你已经掌握了制胜之道。如果是第二种情况,我的建议是,继续阅读本文,思考在大数据上的投入将会给企业带来什么改变。
需要考虑的问题
下面这几个简单的问题将有助于你判断是否该在大数据上进行投资:
基于企业现有的数据,你是否能产生出新的洞察?
从IT的角度,结合业务数据是否能提升企业的效率?
以一个客户的角度出发,考虑企业是否能更好地为你服务,提升你的效率,让CFO不再愁眉苦脸?
对于同行业或者其他行业那些宣称通过大数据取得成功的企业,你是否会感到嫉妒?
如果你的同事(比如首席营销官)很快就会来问你是否具备大数据方面的能力,你会不会感到担心?如果答案是否定的,依据是什么?
对于上述问题中的任何一个,如果你的答案是肯定的,那么也许就应该考虑以下几个方面:
投资规划
挖掘大数据的应用场景与其他新技术的投资并无二致。驱动因素?风险忍受度?改变现状后的预期结果?能挖掘什么新的价值,其中有形和无形价值的比例各是多少?
以上问题中,没有任何一个是决定性的。但是所有问题放在一起,就足以形成最终的投资决策。如果事关新兴的理念,供应商和顾问们会竭力想在新领域打出名声,你可以好好利用这一点。
当新技术在各个行业分块或业务链条上的应用还不充分时,供应商和系统集成商会更愿意在商业开发上进行投入,这就为你尽可能降低成本提供了机会。
合作伙伴选择
为什么只挑选一家合作伙伴?同时引入多家合作伙伴对同一组数据进行挖掘,这在业界已经有诸多正面的案例。各家合作伙伴之间会进行真正的竞争,从自身视角出发分析数据。在这种情况下,客户通常会得到数个不同的结果,其中任何一个都可能是真正的洞察。
但是,当你期望最终获得有形价值时,要做好准备面对各种意想不到的结果。
对各类结构化数据的可视化无疑会对决策有所帮助。可视化能够让数据变得更加容易理解,提升附加价值。然而,当把同样的结构化数据与非结构化数据以及具体的上下文相结合时,真正的洞察才会产生。
要鼓励你的大数据供应商打破传统思维,向你展示之前从未想象过的结果。尽管实际工作完成之前无法预测是否能带来价值,但是这至少能让你从全新的角度去思考业务。一旦获得了新的视角,你将从此脱胎换骨。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10